Let XX2 be a Markov Bernoulli sequence with initial probabilities p of success and q-1-p of failure and probabilities q+pp. (1-p)p in the first row and (1-p)q.p+eq in the second row of the transition matrix. A uniform estimate for the speed of convergence in the central limit theorem for the distribution of S = X, is obtained.
Gharib, M., & Yehia, A. (1987). A Limite Theorem for the SUM of N Marko-Bernoulli Random Variables. The Egyptian Statistical Journal, 31(1), 53-61. doi: 10.21608/esju.1987.428898
MLA
M. Gharib; A. Yehia. "A Limite Theorem for the SUM of N Marko-Bernoulli Random Variables", The Egyptian Statistical Journal, 31, 1, 1987, 53-61. doi: 10.21608/esju.1987.428898
HARVARD
Gharib, M., Yehia, A. (1987). 'A Limite Theorem for the SUM of N Marko-Bernoulli Random Variables', The Egyptian Statistical Journal, 31(1), pp. 53-61. doi: 10.21608/esju.1987.428898
VANCOUVER
Gharib, M., Yehia, A. A Limite Theorem for the SUM of N Marko-Bernoulli Random Variables. The Egyptian Statistical Journal, 1987; 31(1): 53-61. doi: 10.21608/esju.1987.428898