The standard linear programming problem with a finite optimum value is considered. Probability distributions are assumed for the coefficients in the simplex tableaus. A probability of reaching optimality in one simplex iteration i$ then derived fort the following two problems:
l- if a constraint. is adjoined to an optimized simplex tableau with both unbounded and bounded variables.
2- if an additional column is inserted in an optimized tableau.
Abdel-Fattah, I. (1988). Probabilistic Version for Sensitivity Analysis in Deterministic Linear Programming Model. The Egyptian Statistical Journal, 32(2), 1-16. doi: 10.21608/esju.1988.428746
MLA
Ibrahim Mousa Abdel-Fattah. "Probabilistic Version for Sensitivity Analysis in Deterministic Linear Programming Model", The Egyptian Statistical Journal, 32, 2, 1988, 1-16. doi: 10.21608/esju.1988.428746
HARVARD
Abdel-Fattah, I. (1988). 'Probabilistic Version for Sensitivity Analysis in Deterministic Linear Programming Model', The Egyptian Statistical Journal, 32(2), pp. 1-16. doi: 10.21608/esju.1988.428746
VANCOUVER
Abdel-Fattah, I. Probabilistic Version for Sensitivity Analysis in Deterministic Linear Programming Model. The Egyptian Statistical Journal, 1988; 32(2): 1-16. doi: 10.21608/esju.1988.428746