Robustness to nonnormality is studied of slope estimator of a straight line fitted by minimising the sum of squares of deviations perpendicular to the line when both variables are subject to errors, nonnormal, and also true valuesof the linear relationship follow a nonnormal distribution. It is shown that the slope estimator is fairly insensitive to nonnormality of the true values and likely to be little affected by nonnormality of the error-distributions having equal variances. Besides, sen-sitivity to departure from equality of error variances is examined. Some key words: Asymptotic distribution, Functional relationship. Robustness to nonnormality: Structural relation-ship.
EL-Sayyad, G., Assas, B., & Atiquliah, M. (1990). Robustness to Non-Normality of Perpendicular Least Square Estimator of a Slope Parameters. The Egyptian Statistical Journal, 34(1), 187-192. doi: 10.21608/esju.1990.427524
MLA
G.M. EL-Sayyad; B.M. Assas; M. Atiquliah. "Robustness to Non-Normality of Perpendicular Least Square Estimator of a Slope Parameters", The Egyptian Statistical Journal, 34, 1, 1990, 187-192. doi: 10.21608/esju.1990.427524
HARVARD
EL-Sayyad, G., Assas, B., Atiquliah, M. (1990). 'Robustness to Non-Normality of Perpendicular Least Square Estimator of a Slope Parameters', The Egyptian Statistical Journal, 34(1), pp. 187-192. doi: 10.21608/esju.1990.427524
VANCOUVER
EL-Sayyad, G., Assas, B., Atiquliah, M. Robustness to Non-Normality of Perpendicular Least Square Estimator of a Slope Parameters. The Egyptian Statistical Journal, 1990; 34(1): 187-192. doi: 10.21608/esju.1990.427524