This paper is concerned with hypothesis testing situations stated in terms of orthonormal constraints on the parameters involved in the distribution functions of random variables under local alternatives when the information matrix is singular. Likelihood equations are derived and existence of likelihood estimators emerging from solving these equations is demonstrated. Asymptotic properties of obtained likelihood estimators and the likelihood ratio statistic - 2log λ are developed.
El-Helbawy, A. (1982). A Note on the Asymptotic Properties of Constrained ML Estimators Under a Class of Local Alternatives When the Information Matrix is Singular. The Egyptian Statistical Journal, 26(1), 30-41. doi: 10.21608/esju.1982.316617
MLA
Abdalla T. El-Helbawy. "A Note on the Asymptotic Properties of Constrained ML Estimators Under a Class of Local Alternatives When the Information Matrix is Singular", The Egyptian Statistical Journal, 26, 1, 1982, 30-41. doi: 10.21608/esju.1982.316617
HARVARD
El-Helbawy, A. (1982). 'A Note on the Asymptotic Properties of Constrained ML Estimators Under a Class of Local Alternatives When the Information Matrix is Singular', The Egyptian Statistical Journal, 26(1), pp. 30-41. doi: 10.21608/esju.1982.316617
VANCOUVER
El-Helbawy, A. A Note on the Asymptotic Properties of Constrained ML Estimators Under a Class of Local Alternatives When the Information Matrix is Singular. The Egyptian Statistical Journal, 1982; 26(1): 30-41. doi: 10.21608/esju.1982.316617