The main purpose of this paper is to study the hazard function of the Lerch distribution and prove that the hazard function can be constant, monotonically decreasing and monotonically increasing. Lerch distribution therefore generalizes the model of dispersal introduced by Kulasekra (1992) and it provides a particularly simple description of survival, failure and dispersal or similar processes described over discrete time or space.
EI-Sayed, S., Fergany, H., & Abd EI-Latif, W. (2005). The Hazard Function of Lerch Distribution. The Egyptian Statistical Journal, 49(1), 53-62. doi: 10.21608/esju.2005.313555
MLA
S. M. EI-Sayed; H. A. Fergany; W. A. Abd EI-Latif. "The Hazard Function of Lerch Distribution", The Egyptian Statistical Journal, 49, 1, 2005, 53-62. doi: 10.21608/esju.2005.313555
HARVARD
EI-Sayed, S., Fergany, H., Abd EI-Latif, W. (2005). 'The Hazard Function of Lerch Distribution', The Egyptian Statistical Journal, 49(1), pp. 53-62. doi: 10.21608/esju.2005.313555
VANCOUVER
EI-Sayed, S., Fergany, H., Abd EI-Latif, W. The Hazard Function of Lerch Distribution. The Egyptian Statistical Journal, 2005; 49(1): 53-62. doi: 10.21608/esju.2005.313555