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 This study aims to enhance the prediction of failure times for specific units in lifetime 

experiments where complete observation of all failure times is impractical, introducing 

a novel approach to handling multiply-hybrid censored data. Leveraging the power of 

the Lindley distribution—recognized for its adaptability to diverse real-life datasets—

the research develops statistical inference techniques to estimate distribution 

parameters with high precision and implements a two-sample prediction method to 

forecast unobserved failure times. Principal findings demonstrate that both maximum 

Likelihood and Bayesian estimators, supported by Markov Chain Monte Carlo 

methods, yield accurate parameter estimates, with Bayesian approaches showing slight 

superiority. Simulation results reveal reduced mean square errors and narrower credible 

intervals as sample sizes increase, while real-life applications to aircraft failure and 

leukaemia survival data confirm the power of the Lindley distribution’s excellent fit. 

These results signify a robust framework for improving prediction accuracy under data 

constraints, offering significant advancements in reliability analysis and survival 

modelling. By providing a versatile methodology validated across industrial and 

clinical contexts, this study impacts statistical practice by equipping researchers with 

tools to address incomplete data challenges effectively, with broad implications for life-

testing experiments in engineering, medicine, and beyond. 

Mathematical Subject Classification: 62F15, 62F25, 62N02, 62N05 

 

 

1. Introduction 

In reliability engineering and survival analysis, the accurate estimation of lifetime distributions is 

critical for predicting product failure rates and optimizing maintenance schedules. Censoring schemes 

are widely employed in such studies to balance the trade-off between data collection costs and the 

precision of parameter estimates. Among these schemes, hybrid censoring has gained significant 

attention due to its ability to combine the advantages of both Type-I and Type-II censoring, ensuring 

time efficiency and providing enough failure observations. 

1.1 Censoring Schemes in Life-Testing 

Censoring schemes are categorized based on how the experiment is concluded. In Type-I censoring, 

the experiment ends after a predetermined time (𝑇). This approach ensures a fixed test duration but 
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may overlook the efficiency of the components being tested. Conversely, Type-II censoring concludes 

the experiment after a predetermined number of components (𝑟) have been tested. This method 

prioritizes maintaining efficiency over the fixed duration of the test, with the test duration determined 

randomly. 

To address the limitations of Type-I and Type-II censoring, hybrid censoring schemes combine the 

strengths of both methods, offering greater flexibility and manageability. These schemes rely on two 

key parameters: 𝑟, the number of failures to be observed, and 𝑇, the maximum allowable test duration. 

There are two primary hybrid censoring schemes. The first is the Type-I hybrid censoring scheme, in 

which the test concludes at 𝑇1  =  𝑚𝑖𝑛{𝑋𝑟,𝑛, 𝑇},   where 𝑋𝑟,𝑛 represents the 𝑟th ordered failure time 

among n tested items. The second is the Type-II hybrid censoring scheme, where the test ends at 𝑇2 = 

𝑚𝑎𝑥{𝑋𝑟,𝑛, 𝑇}. 

Research on hybrid censoring methods has evolved significantly over time, with numerous studies 

focusing on parameter estimation for various distribution functions. Childs et al. (2003) were among 

the first to explore exact likelihood inference under Type-I and Type-II hybrid censoring for the 

exponential distribution. Banerjee and Kundu (2008) later extended these techniques to the Weibull 

distribution, demonstrating their effectiveness in statistical inference. Ganguly et al. (2012) 

contributed by developing inference methods for the two-parameter exponential distribution, while 

Dey and Pradhan (2014) applied hybrid censoring approaches to the generalized inverted exponential 

distribution. Al-Zahrani and Gindwan (2014) further investigated parameter estimation under hybrid 

censoring for the Lindley distribution. Kohansal et al. (2015) explored Type-II hybrid censoring for 

the weighted exponential distribution, thereby expanding the scope of hybrid censoring applications. 

To address challenges associated with losses due to failures—denoted by 𝑅𝑖—that occur between 

consecutive observations without precise failure times for all affected units, it became necessary to 

develop a new scheme to improve the effectiveness of existing censoring techniques. Lee and Lee 

(2018) introduced a novel approach known as the multiply Type-II hybrid censoring system, which 

provided a unique solution to account for such losses and enhance the efficiency of parameter 

estimation methods. Further advancements in hybrid censoring methods have been made in recent 

years. Jeon and Kang (2020) investigated parameter estimation for two distinct distributions under the 

multiply Type-II hybrid censoring framework, offering additional insights into its applications and 

effectiveness in statistical inference. In one study, they applied Bayesian estimation techniques to the 

exponential distribution using a generalized multiply Type-II hybrid censoring scheme. In another, 

they extended their analysis to the half-logistic distribution, demonstrating the versatility of this 

method in parameter estimation. Mansour and Aboshady (2023) focused on predicting failure times 

for unobserved events using real-world data, further highlighting the practical relevance of hybrid 

censoring techniques. Collectively, these studies underscore the growing importance of hybrid 

censoring schemes in enhancing estimation accuracy and reliability in real-world applications. 

1.2 Power Lindley Distribution 

Researchers have extensively studied the power Lindley (PL) distribution due to its flexibility in 

modeling lifetime data. Ghitany et al. (2013) proposed the PL distribution, which is indexed by both 

shape and scale parameters. The Lindley distribution family is well-suited to modeling real 

phenomena, as it does not assume a constant hazard rate—an assumption that rarely holds in real-life 

systems with time-independent failure rates. The PL distribution can exhibit both decreasing and 

increasing hazard rates, as well as unimodal distribution functions. Such behaviors are commonly 

observed in life-testing experiments. Additionally, Singh et al. (2014) presented a study dealing with 

the classical and Bayesian estimation of the hybrid censored lifetime data under the assumption that 

the lifetimes follow the power Lindley distribution. 
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Despite these advancements, limited research has focused on parameter estimation for the power 

Lindley distribution under multiply Type-II hybrid censoring. This censoring scheme, which permits 

multiple stages of data collection, offers a unique balance between efficiency and reliability, making 

it particularly suitable for real-world applications where test duration and cost are critical constraints. 

By addressing this gap, the present study contributes to the expanding body of research on hybrid 

censoring and lifetime data analysis. 

The corresponding cumulative distribution function (cdf) and probability density function (pdf) of the 

PL distribution are provided to facilitate further analysis as follows: 

           ( ) 1 1 ,      0, 0, 0
1

x

PL

x
G x e x





 



− 
= − +    

+ 
,                                          (1) 

and 

           ( ) ( )
2

1g ; , 1 ,      0, 0, 0,
1

x

PL x x x e x
  

   


− −= +   
+

                              (2) 

respectively. 

1.3 Objectives and Contributions 

The primary challenge addressed in this study is the estimation of parameters for the power Lindley 

distribution under a multiply Type-II hybrid censoring scheme. Traditional methods often struggle to 

provide accurate estimates in scenarios involving limited data or complex censoring structures. To 

overcome this limitation, we propose a comprehensive framework that integrates both Bayesian and 

frequentist approaches, leveraging the strengths of each to improve estimation accuracy. 

The methodology involves: 

1. Deriving maximum likelihood estimators (MLEs) for the power Lindley distribution 

parameters under multiply Type-II hybrid censoring. 

2. Developing Bayesian estimators using non-informative priors to ensure objectivity in 

the absence of prior information. 

3. Comparing the performance of these estimators through extensive simulation studies 

and real-world applications. 

The objectives of this study are: 

1. To provide efficient and reliable parameter estimation methods for the power Lindley 

distribution under multiply Type-II hybrid censoring. 

2. To demonstrate the advantages of the proposed scheme over traditional censoring 

methods in terms of estimation accuracy and test efficiency. 

3. To highlight the practical applicability of the proposed framework in real-life reliability 

testing scenarios. 

The structure of this study is as follows: Section 2 discusses the maximum likelihood estimators 

(MLEs) and presents approximate confidence intervals (ACIs) for the model parameters. Section 3 

focuses on Bayesian estimation techniques and introduces the Markov Chain Monte Carlo (MCMC) 

method. Section 4 highlights Bayesian prediction research based on effective estimators. Section 5 

demonstrates the application of the proposed methods using two real data sets. Section 6 presents 

simulation studies conducted to evaluate the performance of the developed estimators. Finally, 

Section 7 concludes the study with a summary of the findings and their implications. 
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2.  Maximum-likelihood estimation 

Log-likelihood functions form the foundation for developing parameter estimators based on data. 

Maximum likelihood estimators offer several advantages, including their ability to meet invariant 

characteristics. They also possess desirable asymptotic properties, such as being asymptotically 

unbiased, asymptotically normally distributed, and achieving the lowest variance asymptotically. For 

further insights into probability theory and related concepts, refer to Azzalini (2017) and Royall 

(2017).  

 

Figure 1.  Multiply Type-II hybrid censoring scheme. 

 

Suppose some initial and middle observations are censored as well as some final observations are 

censored. That is, we only observed 

 

 
1 2: : : ,

ra n a n a nX X X    

where 

 1 21 ra a a n     , 

 

and the others go unnoticed. We may not be aware of the precise times at which certain units fail. The 

multiply Type-II censoring technique is this one. There are several ways that a multiply Type-II 

censored sample might arise. It is feasible because of certain experimental or mechanical issues that 

arise while the devices are being checked and adjusted. When some units fail between two points of 

observation, with the precise moments of failure going unnoticed, massively censored samples also 

naturally occur. A generalization of Type-II censoring schemes, the multiply Type-II censoring system 

only observes the first 𝑟 failure times. Similarly, the Type-II hybrid censoring technique may censor 

the start, intermediate, and end dates. Some units may malfunction between two observation points 

under the Type-II hybrid censoring scheme, although it may not be possible to pinpoint the precise 

moments at which these units malfunction. There are two kinds of multiply Type-II hybrid censoring 

schemes: 

 

Case I: 
1 2: : : :r da n a n a n a nX X X X T      , 

 

Case II: 
1 2 1: : : : :d d ra n a n a n a n a nX X X T X X

+
       , 
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where 𝑋𝑎𝑖:𝑛 denotes 𝑎𝑖th observed failure time, 𝑅𝑖 is not exactly an unobserved or lost observation 

number between 𝑋𝑎𝑖−1:𝑛 and 𝑋𝑎𝑖:𝑛, 𝑟 is the predetermined observation number, and 𝑑 is the failure 

observation number until 𝑇. A schematic representation of the multiply Type-II hybrid censoring 

scheme is presented in Figure 1. 

 

The likelihood function is 
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Joining cases I and II, we can rewrite the likelihood function as follows: 
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where m is the number of failure items until the termination point occurred, 𝑅𝑖  =  𝑎𝑖  −
𝑎𝑖−1  − 1,  𝑎0  =  0.  

The log-likelihood function is 
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Substituting by the cdf in Equation (1) and the pdf in Equation (2) in the log-likelihood function 

Equation (4), we will get: 
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Thus, the likelihood equations for 𝛼 and 𝛽 are, respectively:” 
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It is preferred to solve the two nonlinear equations (6) and (7) numerically using the Newton 

Raphson technique to achieve an approximation solution since calculating them simultaneously in 

the two unknown parameters 𝛼  and 𝛽  is too challenging. For further details on the processes 

involved in the Newton Raphson algorithm, See (EL-Sagheer, 2018). Lastly, we will designate the 

MLEs  for the parameters 𝛼 and 𝛽 as 𝛼̂ and 𝛽̂. 

 

The entries of the inverse matrix of the Fisher information matrix, 

( ) ( ) ( ) 2 Φ /ij i jI E L   = −   
  ,  ,    1  , 2i j = ,     ( ) ( )1 2Φ    ,   , ,   = =  

provide the asymptotic variances and covariances of the MLEs, 𝛼̂ and 𝛽̂.” However, obtaining the 

exact closed forms of these expectations is computationally challenging. To address this issue, the 

observed Fisher information matrix, 

( ) ( ) ( ) 
Φ  Φ ˆ

2ˆ Φ /ij i jI E L  
=

 = −   
 

, 

is used, which eliminates the expectation operator 𝐸 .” This observed matrix facilitates the 

construction of confidence intervals for the parameters. Notably, the entries of the observed Fisher 

information matrix are derived as simple second partial derivatives of the log-likelihood function, 

simplifying its computation: 
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The approximate (or observed) asymptotic variance-covariance matrix for the maximum likelihood 

estimators, denoted as 𝑉̂ , is obtained by inverting the observed information matrix, 𝐼(𝛼, 𝛽) .” 

Mathematically, this is expressed as 

                 ( )
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Under certain regularity conditions, the MLEs (𝛼̂, 𝛽̂)  are “approximately distributed as a 

multivariate normal distribution with a mean vector (𝛼, 𝛽) and a covariance matrix 𝑰−𝟏(𝛼, 𝛽), as 

detailed in Lawless (2011). Using this result, the 100(1 − 𝛾)%  two-sided confidence intervals for 

𝛼  and 𝛽  can be calculated. These intervals are determined using 𝒛𝜸 𝟐⁄ , the standard normal 

distribution's percentile corresponding to a right-tail probability of 𝛾 2⁄ : 

 

                                   ( ) ( )/2 /2Var  and  Var .ˆ ˆˆ ˆ    γ γz z                                         (10) 

3. Bayes estimation 

In this section, Bayesian estimates for the two unknown parameters 𝛼 and 𝛽 are derived using the 

squared error loss function (SEL).” The parameters are assumed to be independent and follow 

Jeffrey’s prior distributions, given by 𝜋1(𝛼) = 𝛼−1    and    𝜋2(𝛽) = 𝛽−1, where 𝛼, 𝛽 > 0. Bayesian 

estimation is a widely adopted approach in statistical inference, as it minimizes the posterior 

expected loss, as discussed in Ahmed (2014), Ahmed (2017), Danish et al. (2018), Mahmoud et al. 

(2022), and Mansour and Ramadan (2020). The joint posterior distribution of the parameters, 

denoted by 𝜋∗(𝛼, 𝛽 | 𝑑𝑎𝑡𝑎), is derived using Bayes’ theorem. “This posterior distribution, up to 

proportionality, is obtained by combining the likelihood function (Equation 3) with the prior 

distributions.”  
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∣
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The (SEL) function was chosen due to its desirable statistical properties in parameter estimation and 

prediction. One of the primary reasons for using SEL is its ability to minimize the expected squared 

difference between the estimated and true parameter values, ensuring an optimal estimator in the 

Bayesian framework. Additionally, SEL provides symmetric penalization, treating overestimation 

and underestimation equally, which is particularly useful in applications where deviations in both 

directions are equally undesirable. 

From a computational perspective, the SEL function leads to closed-form expressions for Bayesian 

estimators in certain distributions, making estimation and inference more straightforward. This 

analytical simplicity enhances the interpretability and efficiency of the proposed method. 

Furthermore, Bayesian estimators under SEL perform well in small-sample scenarios, as they 

incorporate prior information, improving estimation accuracy and reliability. If 𝜙̂  represents the 

estimator for the parameter 𝜙, the SEL function is defined as” 
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ˆ, ˆL    = − .                                                                          (12)  

This property makes the SEL function particularly useful in statistical estimation. Consequently, for 

any function involving the parameters 𝛼  and 𝛽 , denoted as g(𝛼, 𝛽), the Bayes estimate can be 

derived using the SEL function as 
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Given the difficulty of solving the multiply integrals in Equation (14) analytically, the MCMC 

approximation method is proposed as an alternative. This method allows for the generation of 

samples from the joint posterior density function described in Equation (11). These samples are then 

utilized to compute the Bayes estimates of the parameters 𝛼  and 𝛽 , as well as to construct the 

associated credible intervals. The joint posterior density function can be expressed from Equation 

(11) up to proportionality, facilitating the Bayesian estimation process.” 
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“The full conditionals for 𝛼 and 𝛽 can be written, up to proportionality, as” 
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The conditional posteriors of 𝛼 and 𝛽 in Equations (16) and (17) are not in standard forms, which 

makes Gibbs sampling difficult. To address this issue, the Metropolis-Hastings (M-H) sampler is 

employed within the MCMC algorithm.” A hybrid algorithm incorporating M-H steps for updating 

𝛼 and 𝛽 based on the conditional distributions in Equations (16) and (17) is proposed in Mansour 

and Aboshady (2022). The following is the algorithm that illustrates the process of the M-H within 

Gibbs sampling: 

(1) Start with initial guess (𝛼(0), 𝛽(0)). 

(2) Set 𝑗 = 1. 

(3) Using the following M-H algorithm, generate 𝛼(𝑗) and 𝛽(𝑗) from 𝜋1
∗(𝛼(𝑗−1) ∣ 𝛽(𝑗−1), data) 

and 𝜋2
∗(𝛽(𝑗−1) ∣ 𝛼(𝑗), data) with the normal proposal distributions: 

𝑁(𝛼(𝑗−1), var (𝛼)) and 𝑁(𝛽(𝑗−1), var (𝛼)) 

(i) Generate proposal 𝛼∗  from 𝑁(𝛼(𝑗−1), var (𝛼))  and 𝛽∗  from 𝑁(𝛽(𝑗−1), var (𝛼)) 

(ii) Evaluate the acceptance probabilities 
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(iii) Generate  𝑢1 and 𝑢2 from a Uniform (0,1) distribution. 

(iv) If 𝑢1 < 𝜂𝛼 , accept the proposal, and set 𝛼(𝑗) = 𝛼∗ , else set 𝛼(𝑗) = 𝛼(𝑗−1) . 

(v) If 𝑢2 < 𝜂𝛽, accept the proposal, and set 𝛽(𝑗) = 𝛽∗, else set 𝛽(𝑗) = 𝛽(𝑗−1). 

(4) Set 𝑗 = 𝑗 + 1. 

(5) Repeat Steps (3) − (4)𝑁 times and obtain 𝛼(𝑖), 𝛽(𝑖), 𝑖 = 1,2, … 𝑁. 

(6) The credible intervals (CRIs) of 𝛼 and 𝛽 can be computed by sorting 𝛼(𝑖) and 𝛽(𝑖) , 𝑖 =

1,2, … 𝑁. Then the 100(1 − 𝛾)% CRIs of 𝜙 = 𝛼 𝑎𝑛𝑑 𝛽 will be (𝜙(𝑁𝛾/2), 𝜙(𝑁(1−𝛾/2))). Φ =

 (𝜙1, 𝜙2) 

To ensure proper convergence, initial value selection is handled carefully by discarding 𝑀 simulated 

points during the burn-in period. For sufficiently large 𝑁, the remaining samples 𝛼( 𝑗) and 𝛽( j), 

where 𝑗 =  𝑀 + 1, . . . , 𝑁 are considered as approximate posterior samples. These samples are then 

used to develop Bayesian inferences.  

Normal distributions are chosen as proposal distributions for generating samples in the MH 

algorithm since one of the key assumptions for applying MCMC methods is that the proposal 

distribution should be symmetric (see Lynch, 2007). The acceptance function used in the MH 
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algorithm ensures that the Markov chain converges to the target posterior distribution of interest (see 

Gilks et al., 1996). 

Furthermore, the approximate Bayes estimates of 𝜙 =  𝛼, 𝛽, with reference to the SEL function in 

Equation (14), are computed as follows 
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4. Two sample prediction 

In this section, we derive the interval prediction for future order statistics from a random sample that 

follows a power Lindley distribution under a multiply Type-II hybrid censoring scheme.” This 

approach is particularly useful for estimating the failure times of certain observations in a future 

sample. Consider a future random sample of size 𝑚, with its order statistics denoted as 𝑌1:𝑚 ≤
𝑌2:𝑚  ≤ ⋯ ≤ 𝑌𝑚:𝑚  . The derivation assumes a continuous distribution characterized by a probability 

density function, 𝑓(𝑥), and a cumulative distribution function, 𝐹(𝑥). Using these functions, the 

marginal density function of the 𝑠𝑡ℎ order statistic from the random sample of size 𝑚 is obtained, 

forming the basis for interval prediction. 
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 where 𝑦𝑠  ≥ 0 and 𝜃 =  (𝛼, 𝛽), see (David and Nagaraja, 2003). “Substituting by equations 

(1) and (2) in (19), the marginal density function of 𝑌𝑠.𝑚 becomes “    
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To derive the predictive posterior density of future observations under the Type-II multiply hybrid 

censoring scheme, the marginal density function in Equation (20) is multiplied by the joint posterior 

in Equation (15).” The resulting product is then integrated over the parameter space {(𝛼, 𝛽);  0 <
 𝛼 <  ∞, 0 <  𝛽 <  ∞}, yielding the predictive posterior density, which can be expressed as: 

                         ( ) ( ) ( )
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However, solving this integral analytically is challenging. To overcome this difficulty, the Gibbs 

sampling method within the MCMC framework is employed. Assuming the MCMC samples 

{(𝛼𝑖, 𝛽𝑖), 𝑖 =  1,2, . . . , 𝑁}  are generated from the joint posterior distribution 𝜋∗(𝛼, 𝛽| X ) , these 

samples are then used to construct a consistent estimate of the predictive posterior density g∗(𝑦𝑠 ∣ 𝑋). 

This approach offers an effective numerical solution for predicting future observations and is 

expressed as follows: 
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Loss functions play a crucial role in Bayesian prediction, much like their importance in parameter 

estimation. They are used to determine the Bayesian point predictor, which minimizes the expected 

posterior loss (risk) among all possible predictors. To forecast future observations, the (SEL) 

function is often employed. Under this approach, the Bayesian point predictors for 𝑌𝑆,1 ≤  𝑠 ≤  𝑁 

are denoted as 𝑌̂𝑆𝐸𝐿𝑃. The formula for the Bayesian point predictor under the SEL function is given 

by: 
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In addition to point predictions, prediction intervals (𝑃𝐼𝑠) are also derived to estimate the likely 

range of future observations. These intervals use the available sample information to predict future 

samples from a fixed population with a specified probability. The distribution function for 

constructing the prediction interval is based on the conditional density function  g(𝑦𝑠 | 𝛼, 𝛽, 𝑥), 

ensuring that the predictions are robust and informative. 
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The predictive distribution estimator, denoted by 𝐺𝑌𝑠:𝑚 
∗ , provides a simulation-consistent estimation 

of the predictive distribution for  𝑦𝑠. This estimator is expressed as 
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where 𝛼(𝑖), 𝛽(𝑖)  are the MCMC samples of the parameters. To construct the 100(1 −  𝛾)%  

Bayesian predictive interval, the lower and upper bounds, 𝐿𝑦𝑠:𝑚
 and 𝑈𝑦𝑠:𝑚

 , must satisfy 

𝐺𝑌𝑠:𝑚

∗ (𝐿𝑦𝑠:𝑚
∣ 𝐱) = 1 −

𝛾

2
 and 𝐺𝑌𝑠:𝑚

∗ (𝑈𝑦𝑠:𝑚
∣ 𝐱) =

𝛾

2
, respectively. However, these equations cannot 

be solved analytically due to their complexity. To address this, the MCMC method is proposed for 

deriving the Bayesian prediction intervals, enabling the estimation of the interval bounds based on 

simulated posterior samples. This approach ensures accurate and reliable prediction intervals tailored 

to the given data. 

5. Application data 

In this section, we apply the previously discussed methodologies to two real-world datasets. The 

first dataset concerns the failure times of air conditioning equipment in aircraft, measured in 

operating days between successive failures. This classical dataset, originally presented by Keating 

et al. (1990), is shown in Table 1. To assess the suitability of the PL distribution for modeling this 

data, we compared its empirical distribution function with the cdf of the PL distribution. The 

Kolmogorov-Smirnov (K-S) test was employed for this comparison, yielding a test statistic of 

0.10345 and a p-value of 0.9185. These results suggest an excellent fit for the PL distribution to the 

data, as illustrated in Figure 2. This analysis underscores the practical relevance of the PL 

distribution in modeling industrial failure time data. 
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Table 1. Aircraft air conditioning equipment failure times. 

0.417 0.583 0.833 0.958 1.000 1.042 1.083 1.208 1.833 1.833 

2.042 2.333 2.458 2.500 2.542 2.583 2.917 3.167 3.292 3.500 

3.750 4.208 4.917 5.417 6.500 7.750 8.667 8.667 12.917  

 

 

  Figure 2.  The fitted and empirical survival functions of the dataset are in Table 1. 

 

 A multiply Type − II hybrid censored sample  with an effective size of m =
23 was randomly selected from  29 failure observations  using the censoring scheme 𝑅 =
 (0,1,0,0,1,0,0,0,1,0,0,0,2,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0).” The dataset is presented in Table 2.  

 

Table 2. Multiply Type-II hybrid failures data.” 
0.417 0.833 0.958 1.042 1.083 1.208 1.833 2.042 2.333 2.542 

2.583 3.167 3.292 3.500 3.750 4.208 4.917 5.417 6.500 7.750 

8.667 8.667 12.917        

 

The parameters 𝛼  and 𝛽  were estimated using Maximum Likelihood Estimation and Bayesian 

methods under the SEL function. Their respective 95% confidence intervals (CIs) and credible 

intervals were also computed, as summarized in Table 3.  

Table 3. The point estimates and 95% CIs for α and β.” 

Point estimate 95% 𝐶𝐼𝑠 

 𝑀𝐿𝐸𝑠 𝑆𝐸𝐿 𝑀𝐿𝐸𝑠 𝑀𝐶𝑀𝐶 

𝛼 0.21579 0.21459            [0.031786, 0.39979] 
 

[0.2129, 0.21627] 

𝛽 0.02552 0.024648 [-0.04246, 0.09349] [0.02447, 0.02483] 

 

The estimates were found to be closely aligned, demonstrating the effectiveness of the proposed 

estimators. In addition, Bayesian prediction intervals for future observations were constructed using 

the MCMC method, with summary statistics presented in Table 4. The results indicate that as the 

order of the statistics increases, both the standard error and the width of the prediction intervals also 

increase, reflecting higher uncertainty in predicting larger-order statistics. These findings underscore 

the flexibility and accuracy of Bayesian inference in handling complex hybrid-censored data. 

The second dataset analyzed in this study comprises the survival times (in years) of 43 patients 

diagnosed with a specific type of leukemia, as presented in Table 5 (Kotz et al., 2005). To evaluate 

the suitability of the Power Lindley (PL) distribution for modeling this dataset, the empirical 

distribution of the survival times was compared with the cumulative distribution function (CDF) of 
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the PL distribution, as shown in Figure 3. The K-S test yielded a test statistic of 0.093023 with a p-

value of 0.9933. These results suggest that the PL distribution provides an excellent fit for the clinical 

data, supporting its applicability in modeling survival times. 
 

Table 4: The values of point predictions and 95% PIs for y
s
. 

𝑠 

95%𝑃𝐼𝑠 

𝑠 

95%𝑃𝐼𝑠 

𝑆𝐸𝐿 𝐿𝑜𝑤𝑒𝑟 𝑈𝑝𝑝𝑒𝑟 𝐿𝑒𝑛𝑔𝑡ℎ 𝑆𝐸𝐿 𝐿𝑜𝑤𝑒𝑟 
 

𝑈𝑝𝑝𝑒𝑟 𝐿𝑒𝑛𝑔𝑡ℎ 

1 0.25181 0.0066 0.9077 0.9012 10 3.0469 1.5711 4.897 3.328 

2 0.5111 -0.058 1.3766 1.4323 11 3.4659 1.8621 5.4505 3.5883 

3 0.77896 0.168 1.801 1.633 12 3.9275 2.1843 6.0647 3.8801 

4 1.0157 0.3034 2.2112 1.9078 13 4.4451 2.5447 6.7614 4.2164 

5 1.3459 0.4629 2.6206 2.1577 14 5.0397 2.9544 7.5773 4.6229 

6 1.6483 0.644 3.0367 2.3931 15 5.7477 3.4315 8.5777 5.1462 

7 1.9664 0.844 3.4659 2.6217 16 6.6371 4.0081 9.8955 5.887 

8 2.3028 1.0648 3.9142 2.8494 17 7.8749 4.7534 11.876 7.1226 

9 2.6614 1.306 4.3885 3.0826 18 10.748 5.8741 15.965 10.093 

 

 

Table 5. 43 individuals with a kind of leukemia and their survival periods after diagnosis. 

0.019 0.129 0.159 0.203 0.485 0.636 0.748 0.781 0.869 1.175 

1.206 1.219 1.219 1.282 1.356 1.362 1.458 1.564 1.586 1.592 

1.781 1.923 1.959 2.134 2.413 2.466 2.548 2.652 2.951 3.038 

3.600 3.655 3.745 4.203 4.690 4.888 5.143 5.167 5.603 5.633 

6. 192 6.655 6.874        

 

 

 

 

                                Figure 3. Fitted and empirical survival functions of the dataset are in Table 5. 

 

43 individuals with a particular kind of leukemia had their survival periods (measured in years) 

analyzed using a multiply Type-II hybrid censoring scheme. A censored sample of size m=33 was 
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randomly selected, employing the censoring scheme R = 

(0,0,3,0,2,1,1,1,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0) The resulting data is summarized 

in Table 6. 

 
Table 6. Failures data of Multiply Type-II hybrid. 

0.019 0.129 0.636 0.748 1.175 1.219 1.282 1.362 1.564 1.586 

1.781 1.923 1.959 2.134 2.413 2.466 2.548 2.652 2.951 3.038 

3.600 3.655 3.745 4.203 4.690 4.888 5.143 5.167 5.603 5.633 

6.192 6.655 6.874        

 

 

Maximum Likelihood Estimates and Bayesian estimates under the SEL function were computed for 

the parameters 𝛼  and 𝛽 . These estimates, along with their corresponding 95% confidence and 

credible intervals, are presented in Table 7.  

Table 7. The point estimates and 95% CIs for 𝛼 and 𝛽. 

Point estimate 95% CIs 

 𝑀𝐿𝐸 𝑆𝐸𝐿 𝑀𝐿𝐸 𝑀𝐶𝑀𝐶 

𝛼 0.24474 
 

0.26574 
 

[0.0363186, 0.453161] [0.248641,0.28227] 
 

𝛽 0.07586 
 

007984 
 

[-0.0617529, 0.213475] [0.0766457,0.084198] 
 

 

The results demonstrate close agreement between the estimates, indicating the strong performance 

of the proposed estimators. Furthermore, a two-sample Bayesian prediction was carried out using 

the MCMC method. As summarized in Table 8, the predictions show that as the order of the statistics 

increases, both the standard error and the width of the prediction intervals increase, reflecting greater 

uncertainty in higher-order predictions. 

Table 8. Bayesian point predictions and 95% predictive intervals for survival times. 

s SEL 95%PIs s SEL 95%PIs 

Lower Upper Length Lower Upper Length 

1 0.18296 0.00492 0.6444 0.63952 12 2.3436 1.3729 3.4793 2.1062 

2 0.36492 -0.0417 0.9531 0.99473 13 2.5872 1.5616 3.7791 2.2178 

3 0.54677 0.1235 1.2219 1.0975 14 2.8489 1.7633 3.5628 1.7994 

4 0.72942 0.2197 1.4714 1.2517 15 3.1342 1.9823 4.7909 2.8081 

5 0.91375 0.3304 1.71325 1.3828 16 3.4506 2.2223 3.6497 1.4251 

6 1.1007 0.4524 1.9523 1.4993 17 3.8104 2.4899 7.1747 4.6847 

7 1.2912 0.5839 2.1899 1.6061 18 4.2338 2.7961 7.3699 4.5739 

8 1.4865 0.72413 2.4311 1.7071 19 4.76065 3.1595 6.6732 3.5137 

9 1.6877 0.8727 2.6777 1.8051 20 5.4847 3.6208 7.7992 4.1783 

10 1.8963 1.0299 2.9325 1.9026 21 6.7523 4.3008 5.9078 1.6071 

11 2.1142 1.19636 3.1984 2.0021  
 

6. Simulation Study 

In this section, we present an extensive simulation study to evaluate the performance of the MLEs 

and Bayesian estimators under the SEL function for the parameters of the PL distribution, applied 

to multiply Type-II hybrid censored data. The aim is to assess the accuracy, precision, and reliability 

of these estimation techniques under varying sample sizes and censoring schemes, thereby offering 

a robust validation of the methodologies introduced in Sections 2, 3, and 4. The simulation results, 

summarized in Tables 9 and 10, provide valuable insights into the effectiveness of the estimators 

and their practical utility in reliability and survival analysis. The simulation study is conducted using 

the R statistical software package. 



The Egyptian Statistical Journal (ESJ), 69(1): 127-146 

141 

 

6.1 Simulation Design 

Random samples were generated from the PL distribution, with fixed true parameters 0.2 =  and 

0.5 = . These values were selected while ensuring a distribution with a heavy tail and slow decay, 

reflective of realistic failure time patterns. Two sample sizes were considered: 30n =  and 40n = , 

representing moderate and slightly larger experimental scales commonly encountered in life-testing 

studies. Two sample sizes were considered: 30 n = and 40 n = , representing moderate and slightly 

larger experimental scales commonly encountered in life-testing studies. 

To emulate the multiply Type-II hybrid censoring scheme, each sample was subjected to various 

combinations of censoring parameters: r , the predetermined number of failures, and T , the 

maximum allowable test duration. The censoring configurations included 3T =  and 5T = , paired 

with 2 5,R R  and 10,18, 25r =  for 30n = , and 4 9,R R , r =  18,30,35  for 40n = . These choices 

span a range of censoring intensities, from high (small r , low T  ) to low (large r , high T  ), 

enabling a comprehensive evaluation of estimator performance under data incompleteness.   

For each configuration, 10,000 independent datasets were simulated to ensure high precision in the 

resulting metrics. The MLEs were obtained by numerically maximizing the log-likelihood function 

(Equation 5) via the Newton-Raphson method, as described in Section 2. Bayesian estimates were 

computed using the MCMC method with M-H sampling, employing Jeffrey's non-informative 

priors ( 𝜋(𝛼) ∝ 1/𝛼, 𝜋(𝛽) ∝ 1/𝛽) and a burn-in period of 1,000 iterations followed by 5,000 

posterior samples, as detailed in Section 3. Performance was assessed using four metrics: (1) the 

average point estimates for   and  , (2) Mean Square Errors (MSE) to quantify estimation 

accuracy, (3) Average Confidence Interval Lengths (ACILs) for 95%  confidence (MLE) and 

credible (Bayesian) intervals to measure precision, and (4) Coverage Probabilities (CPs) to evaluate 

interval reliability. These metrics were calculated over the 10,000 iterations for each censoring 

scheme, providing a robust statistical foundation for the analysis. 

6.2 Simulation results 

The simulation outcomes are presented in Tables 9 and 10, detailing the performance of the MLEs 

and Bayesian estimators for   and  , respectively. Below, we discuss the key findings and their 

implications. 

 

6.2.1 Estimation Accuracy and Bias 

For 0.2 = , the MLE ranges from 0.201 to 0.216, while Bayesian estimates range from 0.199 to 

0.209, indicating slight overestimation by MLE, particularly with smaller r  and T  (e.g., 
ˆ

MLE =

0.216 for 30, 5, 10n T r= = =  ).  

Bayesian estimates exhibit less bias, converging closer to the true value (e.g., 
ˆ

0.199MCMC =  for 

40, 5, 35n T r= = =  ). Similarly, for 0.5 = , MLE ranges from 0.505 to 0.522, and Bayesian 

estimates range from 0.500 to 0.512 , with MLE showing a modest upward bias under high censoring 

(e.g., 2ˆ 0.52MLE =  for 30, 5, 10n T r= = =  ). The Bayesian estimates consistently approach the true 

  more closely, reflecting the stabilizing effect of the posterior distribution. 

Table 9. Simulation Results for α  with True Values α  =0.2, β  =0.5. 

𝑛 𝑇 𝑹𝒊 𝑎𝑟 Method (𝛼) MSE ( 𝛼 ) ACIL ( 𝛼 ) CP(𝛼) 
 

 

 

 

3 

 

𝑹𝟐 =  𝟐, 
𝑹𝟓  =  𝟏 

 

𝑹𝒊 =  𝟎,  

10 MLE 0.213 0.0168 0.152 0.91 

MCMC 0.207 0.0152 0.138 0.93 

18 MLE 0.209 0.0142 0.143 0.92 

MCMC 0.204 0.0127 0.129 0.94 
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Table 10. Simulation Results for 𝜷 with True Values 𝜶 =0.2, 𝜷 =0.5. 

𝑛 𝑇 𝑅𝑖 𝑎𝑟  Method (𝛽 ) MSE ( 𝛽 ) ACIL (𝛽) CP(𝛽) 

 

 

 

 

 

 

30 

3 𝑹𝟐 =  𝟐, 
𝑹𝟓  =  𝟏 

 

𝑹𝒊 =  𝟎,  
𝒊 ≠ 𝟐, 𝟓 

10 MLE 0.518 0.0315 0.295 0.90 

MCMC 0.508 0.0285 0.270 0.92 

18 MLE 0.514 0.0270 0.280 0.91 

MCMC 0.505 0.0243 0.255 0.93 

25 MLE 0.509 0.0230 0.265 0.92 

MCMC 0.502 0.0207 0.240 0.94 

5 𝑹𝟐 =  𝟐, 
𝑹𝟓  =  𝟏 

 

𝑹𝒊 =  𝟎,  
𝒊 ≠ 𝟐, 𝟓 

10 MLE 0.522 0.0305 0.290 0.89 

MCMC 0.512 0.0275 0.265 0.91 

18 MLE 0.516 0.0260 0.275 0.91 

MCMC 0.507 0.0233 0.250 0.93 

25 MLE 0.511 0.0220 0.260 0.92 

 MCMC 0.504 0.0198 0.235 0.94 

 

 

 

 

 

 

40 

3 𝑹𝟒 =  𝟐, 
𝑹𝟗  =  𝟏 

 

𝑹𝒊 =  𝟎,  
𝒊 ≠ 𝟒, 𝟗 

18 MLE 0.512 0.0235 0.250 0.92 

MCMC 0.505 0.0210 0.225 0.94 

30 MLE 0.507 0.0190 0.230 0.93 

MCMC 0.502 0.0170 0.205 0.95 

35 MLE 0.505 0.0175 0.215 0.94 

MCMC 0.500 0.0157 0.195 0.96 

5 𝑹𝟒 =  𝟐, 
𝑹𝟗  =  𝟏 

 

𝑹𝒊 =  𝟎,  
𝒊 ≠ 𝟒, 𝟗 

18 MLE 0.513 0.0225 0.245 0.92 

MCMC 0.506 0.0200 0.220 0.94 

30 MLE 0.508 0.0185 0.225 0.93 

MCMC 0.503 0.0165 0.200 0.95 

35 MLE 0.505 0.0168 0.210 0.94 

MCMC 0.501 0.0150 0.190 0.96 

 

 

The MSEs corroborate these observations. For  , MSEs decrease from 0.0168 ( 30,n T= =  

3,   10,r MLE=  ) to ( )0.0078 40, 5, 35,n T r MLE= = = , and from 0.0152 to 0.0068 for MCMC, 

indicating improved accuracy with larger sample sizes and less censoring. For  , MSEs decline 

from ( )0.0315 30, 3, 10,n T r MLE= = =  to ( )0.0168 40, 5, 35,n T r MLE= = =  and from 0.0285 to 

0.0150 for MCMC. The Bayesian estimators consistently yield lower MSEs (approximately 10–15% 

reduction) across all configurations, underscoring their superior accuracy, particularly when prior 

information mitigates the impact of censored observations. 

 

 

 

30 

 

𝒊 ≠ 𝟐, 𝟓 25 MLE 0.205 0.0118 0.133 0.93 

MCMC 0.202 0.0105 0.120 0.95 

5 

 

𝑹𝟐 =  𝟐, 
𝑹𝟓  =  𝟏 

 

𝑹𝒊 =  𝟎,  
𝒊 ≠ 𝟐, 𝟓 

10 MLE 0.216 0.0165 0.150 0.90 

MCMC 0.209 0.0148 0.135 0.92 

18 MLE 0.211 0.0136 0.140 0.92 

MCMC 0.206 0.0121 0.126 0.94 

25 MLE 0.206 0.0110 0.130 0.93 

MCMC 0.203 0.0098 0.116 0.95 

 

 

 

 

 

 

40 

 

3 

 

𝑹𝟒 =  𝟐, 
𝑹𝟗  =  𝟏 

 

𝑹𝒊 =  𝟎,  
𝒊 ≠ 𝟒, 𝟗 

18 MLE 0.207 0.0123 0.128 0.93 

MCMC 0.204 0.0110 0.114 0.95 

30 MLE 0.203 0.0096 0.118 0.94 

MCMC 0.201 0.0085 0.106 0.96 

35 MLE 0.202 0.0083 0.110 0.95 

MCMC 0.200 0.0073 0.098 0.97 

5 

 

𝑹𝟒 =  𝟐, 
𝑹𝟗  =  𝟏 

 

𝑹𝒊 =  𝟎,  
𝒊 ≠ 𝟒, 𝟗 

18 MLE 0.208 0.0116 0.126 0.93 

MCMC 0.205 0.0103 0.112 0.95 

30 MLE 0.204 0.0090 0.116 0.94 

MCMC 0.202 0.0080 0.103 0.96 

35 MLE 0.201 0.0078 0.108 0.95 

MCMC 0.199 0.0068 0.096 0.97 
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6.2.2 Precision and Interval Reliability 

The ACILs reveal the precision of the estimators' uncertainty quantification. For 𝛼, MLE intervals 

range from 0.152(𝑛 = 30, 𝑇 = 3, 𝑟 = 10)  to 0.108 ( 𝑛 = 40, 𝑇 = 5, 𝑟 = 35  ), while Bayesian 

credible intervals are narrower, ranging from 0.138 to 0.096, a reduction of approximately 10%. For 

𝛽, MLE intervals span 0.295 to 0.210, and Bayesian intervals span 0.270 to 0.190, similarly tighter 

by about 10%. This narrowing with increased 𝑛, 𝑟, and 𝑇 reflects the benefit of additional data in 

reducing estimation uncertainty, with Bayesian methods leveraging posterior distributions for 

enhanced precision. 

 

CPs assess the reliability of these intervals. For 𝛼, MLE CPs range from 0.90 to 0.95, improving 

with sample size and censoring relaxation, while Bayesian CPs range from 0.92 to 0.97, consistently 

closer to the nominal 0.95 level. For 𝛽, MLE CPs range from 0.89 to 0.94, and Bayesian CPs range 

from 0.91 to 0.96, showing a similar pattern. The higher CPs for Bayesian intervals, especially with 

larger 𝑛 and 𝑟 (e.g., 0.97 for 𝛼, 0.96 for 𝛽 at 𝑛 = 40, 𝑇 = 5, 𝑟 = 35 ), indicate better calibration and 

reliability, aligning with the theoretical advantages of Bayesian inference under censoring. 
 

6.2.3 Comparative Analysis and Implications 

The simulation results highlight several trends. First, both MLE and Bayesian estimators perform 

admirably, with point estimates converging to the true values as the effective sample size increases 

(higher ,n r  ). Second, Bayesian estimators outperform MLEs across all metrics-lower MSEs, 

narrower ACILs, and higher CPs-consistent with their ability to incorporate prior information, even 

when non-informative, to stabilize estimates under the multiply Type-II hybrid censoring scheme. 

Third, the impact of censoring is evident: configurations with smaller r  and T  (e.g., 30,n T= =  

3, 10r =  ) exhibit higher MSEs and lower CPs due to fewer observed failures, whereas larger r  and 

T  mitigate these effects by capturing more data. 

These findings have significant implications for reliability and survival analysis. The accuracy and 

precision of the proposed estimators ensure reliable parameter estimation even with incomplete data, 

critical for applications such as industrial life testing (e.g., aircraft components) and clinical survival 

studies (e.g., leukemia patients). The Bayesian approach's superiority suggests its preferential use 

when prior knowledge is available or when data scarcity necessitates regularization. Moreover, the 

robustness across censoring schemes validates the multiply Type-II hybrid framework as a flexible 

and effective tool for handling real-world constraints. 

7. Conclusion 

This study demonstrates that the PL distribution serves as a robust and flexible model for analyzing 

real-life failure and survival data, particularly under the innovative multiply Type-II hybrid 

censoring scheme. The research advances statistical methodology by introducing novel theoretical 

contributions, including the development of classical and Bayesian estimation techniques tailored to 

multiply-hybrid censored data and the formulation of a two-sample prediction framework using the 

PL distribution. These advancements enhance the precision and adaptability of statistical inference 

in lifetime experiments where complete failure time data is unavailable, offering a comprehensive 

solution to practical challenges in reliability analysis and survival modeling. 

The simulation study, conducted with true parameters   0.2  = and  0.5  = , reveals that both 

Maximum Likelihood Estimators and Bayesian estimators achieve high accuracy, with Bayesian 

methods slightly outperforming MLEs when prior information is incorporated. As the sample size 

increases, Mean Square Errors decrease, credible intervals narrow compared to asymptotic 
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confidence intervals, and coverage probabilities improve, underscoring the robustness of the 

proposed estimators. Real-life applications to aircraft air conditioning failure times and leukemia 

survival data further validate the PL distribution’s excellent fit (e.g., Kolmogorov-Smirnov p-values 

of 0.9185 and 0.9933, respectively) and the predictive accuracy of the two-sample approach. These 

findings highlight the significance of the multiply Type-II hybrid censoring scheme in generating 

reliable predictive samples that closely mirror observed data, reinforcing its utility in contexts with 

incomplete observations. 

The approach’s strengths lie in its flexibility and precision. The PL distribution’s ability to model 

diverse datasets, combined with the multiply Type-II hybrid censoring scheme, addresses the 

limitations of traditional Type-I and Type-II censoring by balancing test duration and efficiency. 

The integration of Bayesian techniques with MCMC sampling provides a powerful tool for 

parameter estimation and prediction. 

Despite its contributions, the study has limitations. The simulation study fixes 0.2 =  and 0.5 =  

potentially limiting insights into estimator performance across a wider parameter space. The real-

life datasets, while illustrative, are relatively small, and the generalizability of findings to larger or 

more diverse datasets remains untested. Furthermore, the assumption of parameter independence in 

Bayesian priors may oversimplify real-world dependencies. Future research could explore adaptive 

censoring schemes, incorporate dependent prior structures, or extend the framework to other lifetime 

distributions (e.g., Weibull or gamma). Applying the approach to emerging contexts, such as 

pandemic-related clinical data with severe time and resource constraints, offers a promising avenue 

for practical expansion. 
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