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Due to the high non-linearity and volatility of the data, financial time series forecasting 

has been classified as a standard problem. The current study presents a method for 

modeling stationary, non-stationary, non-linear, and high volatility time series using a 

combined model of statistical methods. This study focuses on the performance of 

univariate Box Jenkins and the generalized autoregressive conditionally 

heteroscedasticity (GARCH) models in predicting financial time series and their 

volatility, and it presents an approach for forecasting financial time series that 

outperforms the performance of univariate Box Jenkins or GARCH models separately. 

According to the study, the performance of univariate Box Jenkins models can be 

improved by using the GARCH model of residuals of highly skewed data. The study's 

findings show that the SARIMA model is adequate for modeling the monthly Saudi 

General Index, with the best model being SARIMA (2, 2, 0) (2, 1, 1)4-GARCH (1, 1), 

with MAE, RMSE, and MAPE values of 38.2284, 57.35, and 4.247. The performance 

of Hybrid univariate Box Jenkins-GARCH Models shows that hybrid SARIMA-

GARCH models fit financial time series and are highly accurate for short-term 

forecasting. 

 

1. Introduction 

The autoregressive integrated moving average (ARIMA) model and the generalized autoregressive 

conditionally heteroscedasticity (GARCH) model are commonly used in financial time series 

analysis. ARIMA can show the conditional mean of a time series. With the implicit assumption of 

homoskedasticity, GARCH is completely efficient in studying the volatility characteristics of time 

series. Therefore, the combination of ARIMA and GARCH models can be an effective way to 

overcome the limitations of each component model while also improving forecasting accuracy. In 

the current study, GARCH is used to build a hybrid model that overcomes the linear limitations of 

ARIMA models by including volatility in the forecast model, resulting in excellent forecast results 

(Nelson, 1991; Makridakis, Wheelwright, & Hyndman, 1998; Wang, Huang, & Wang, 2012; Garai 

et al., 2023). 

One of the limitations of Box-Jenkins approach is the assumption of stationarity. It is not always 

possible to make a time-series stationary by differencing or by some other means. Additionally, it 
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is not capable of modelling those data sets that depict volatility. Additionally, The Box-Jenkins 

approach assumes that future values of a time series have a linear relationship with current and 

previous values, as well as with white noise; thus, autoregressive integrated moving average 

(ARIMA) models may be insufficient for complex nonlinear issues. Furthermore, ARIMA models 

require a large amount of historical data to achieve the desired results; therefore, ARIMA cannot 

handle the volatility and nonlinearity of the data series. Forecasting financial time series has proven 

to be difficult due to their nonlinearity and volatility. Statistical methods are based on market 

assumptions, do not account for all market variables, and may fail to detect nonlinearities.  

This paper addresses the following issues; using Box-Jenkins SARIMA models for financial time 

series data. In addition, GARCH models are used to investigate and analyze the volatility in 

financial time series. Additionally, improves the forecast accuracy of Box-Jenkins and GARCH 

models. Introducing a new framework for identifying and estimating the mean and variance 

components of financial time series data using combined Box-Jenkins and GARCH models, which 

explains the volatility structure of the residuals obtained using the best mean models for the time 

series. 

The remainder of this paper is organized as follows: Literature review discussed in Section (2). 

Section (3) outlines the Methodology. The proposal frame is introduced in Section (4). Section (5) 

introduces the results and discussion. Section (6) incorporates the conclusion and remarks. 

2. Literature Review 

Hybrid models have received significant attention in recent years, such as ARIMA-GARCH 

models, reflecting their growing importance in forecasting and analysis of time series. Boudrioua 

and Boudrioua (2020) introduce the ARIMA models to predict the Algerian Stock Exchange. The 

results indicate that the Algerian Stock Exchange could be efficiently modeled and predicted using 

the Box-Jenkins approach. Shahraki and Alimardani (2020) apply ARIMA models to model and 

forecast agricultural production. The study indicated that ARIMA could provide forecasts to help 

farmers and policymakers plan for harvests and suggested that incorporating climatic data into the 

ARIMA model could improve its forecasting accuracy.  Qasim, Ali, Malik, and Liaquat (2021) 

combined GARCH to improve the performance of the ARIMA model in predicting inflation 

volatility, and the results show the combined ARIMA-GARCH provides a more effective forecast 

than traditional models. Hong et al. (2023) combine GARCH models with graph structures to 

model the dependencies and interactions between multiple time series, enhancing forecasting 

accuracy by capturing both temporal and spatial correlations. The proposed method shows its 

superior performance in handling complex and high-dimensional time series forecasting tasks. 

Adewole (2024) uses a hybrid of ARIMA and GARCH models in modeling volatilities in the 

Nigeria Stock Exchange. This study shows that the hybrid ARIMA-GARCH model performs 

better in predicting volatility compared to individual ARIMA or GARCH models. The findings 

provide valuable insights for investors and financial analysts in understanding and managing stock 

market risks in Nigeria. 

3. Methodology 

3.2 Univariate Box-Jenkins Approach 

George Box and Gwilym Jenkins introduced the Autoregressive Integrated Moving Average 

(ARIMA) model family, which involves four iterative steps for model identification, parameter 
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estimation, diagnostic checking, and forecasting (Akaike, 1974; Box et al., 2015; Bollerslev & 

Wooldridge, 1992; Magnus & Fosu, 2006). 

Equation (1) introduces AR(p), an autoregressive model of order. 

𝑦𝑡 =  𝑐 + 𝜙1𝑦𝑡−1 + 𝜙2𝑦𝑡−2 + ⋯ + 𝜙𝑝𝑦𝑡−𝑝 + 𝜀𝑡, (1) 

where 𝜙1, … , 𝜙𝑝 are autocorrelation coefficients, and 𝜀𝑡 is a residual error term. The AR(p) model 

forecasts a variable based on a linear combination of previous values, while ARMA models 

combine AR and MA to create a composite time series model.  

 

In Equation (2), the model is MA(q); then yt is a function in the errors εt, so it is a linear function 

in current and previous errors; (Hillmer & Tiao, 1982).  

𝑦𝑡 =  𝜇 +  𝜀𝑡 + 𝜃1𝜀𝑡−1 + 𝜃2𝜀𝑡−2 + ⋯ + 𝜃𝑞𝜀𝑡−𝑞 , (2) 

where 𝜃1, … , 𝜃𝑞 are moving average coefficients. Mixed autoregressive moving average (ARMA) 

with order (p, q). The form is described as follows by Equation (3): 

𝑦𝑡 =  𝜇 +  ∑ ∅𝑖𝑦𝑡−𝑖 +  ∑ 𝜃𝑗𝜀𝑡−𝑗 +  𝜀𝑡
𝑞
𝑗=1

𝑝
𝑖=1 . (3) 

 

For nonstationary and nonseasonal data series, the autoregressive integrated moving average 

model of order p and q, ARIMA(p,d,q), is recommended. Equation (4) illustrates the general form 

of ARIMA(p,d,q), which generates a time series with a mean μ. 

 

(1 − ∑ ∅𝑖𝐵
𝑖𝑝

𝑖=1 )(1 − 𝐵)𝑑𝑦𝑡 =  𝜇 +  (1 + ∑ 𝜃𝑗𝐵𝑗𝑞
𝑗=1 )𝜀𝑡, (4) 

where ∅𝑖 are coefficients of the AR model, 𝜃𝑗  are coefficients of the MA model, 𝑑 is the order of 

differencing, and 𝐵 is the backward shift operator. 
 

Before applying an ARIMA model, the data series undergoes transformation and differencing to 

stabilize variance and eliminate trends. Box and Cox (1964) proposed a family of power 

transformations to deal with skewness in data (Box & Cox, 1964; Girish, 2016). The form is 

described as follows by Equation (5): 

 

𝑦𝑡
∗ = {

𝑦𝑡
𝜆 − 1

𝜆
                           𝐼𝑓 𝜆 ≠ 0

ln(𝑦𝑡)                            𝐼𝑓 𝜆 = 0

. (5) 

 

In this equation, 𝑦𝑡 represents the actual data at time 𝑡. 𝑦𝑡
∗ represents the transformed data at time 

𝑡, and 𝜆 represents the minimum mean square error of residuals. The above equation's 

transformation applies only to positive values of the time series 𝑦𝑡 > 0. If the values of the time 

series also include negative values, the transformation will take the following form: 
 

𝑦𝑡
∗(𝜆) = {

(𝑦𝑡+𝜆2)𝜆1−1

𝜆1
                          𝐼𝑓 𝜆1 ≠ 0

ln(𝑦𝑡 + 𝜆2)                       𝐼𝑓 𝜆1 = 0
, (6) 

where 𝜆1 is the transformation parameter and 𝜆2 is selected so that 𝑦𝑡 > −𝜆2.  

 

According to Equation (7), the seasonal Box-Jenkins models are represented by SARIMA(p,d,q) 

(P,D,Q)s, where 𝑝, 𝑑, 𝑞 stand for short-term components and 𝑃, 𝐷, 𝑄 for seasonal components with 

length of seasonality 𝑠 and a white noise sequence is 𝜀𝑡, 
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𝜙𝑝 (𝐵) Φ𝑃 (𝐵𝑠)(1 − 𝐵)𝑑(1 − 𝐵𝑠)𝐷𝑦𝑡 =  𝜃𝑞(𝐵)Θ𝑄(𝐵𝑠)𝜀𝑡. (7) 

The autocorrelation function (ACF) and partial autocorrelation function (PACF) of the data are 

employed in Box-Jenkins modeling to determine the time series model's order, as indicated in 

Table (1). 

 
Table 1. Selecting the Order of the Polynomials Model using ACF and PACF Figures  

Model ACF  PACF  

AR(p) Dies down (large spikes) Cut off after lag p 

MA(q) Cut off after lag q Dies down (large spikes) 

ARMA (p, q) Dies down (large spikes) Dies down (large spikes) 

AR(P)S Dies down (large spikes) Cuts off after lag Ps 

MA(Q)S Cuts off after lag Qs Dies down (large spikes) 

ARMA (P, Q)S Cuts off after lag Qs Cuts off after lag Ps 

 

The following actions can be taken regarding the Univariate Box Jenkins model: 

• Stationarity Test: Use the ADF test to determine whether or not the time series is stationary. If 

it's not stationary, it must be made stationary by taking differences, seasonal differences, or 

transformations. 

• ACF and PACF for the non-seasonal stationary data: The autoregressive (AR), integrated (I), 

and moving average (MA) terms in the SARIMA model are arranged in these plots. 

• Seasonality: Select the appropriate seasonal period by looking for any seasonal patterns in the 

data. The seasonal part of the stationary data's ACF and PACF: The order of the seasonal 

autoregressive (SAR) and seasonal moving average (SMA) terms in the SARIMA model is 

determined by these plots (Hyndman & Athanasopoulos, 2018; Deretić et al., 2022). 
 

3.2 Univariate GARCH Models 

Engle (1982) introduced the Autoregressive Conditional Heteroskedasticity (ARCH) model, which 

has been used to model a change in variance in time series with multiple constraints so that the 

model can accurately estimate volatility. Equation (8) illustrates the ARCH(p) process in its 

general form. 

𝜎𝑡
2 =  𝛼 +  ∑ 𝛽𝑖𝜀𝑡−1

2𝑝
𝑖=1 . (8) 

 

One of the weaknesses of ARCH models is that they assume that volatility is affected by both 

positive and negative shocks in the same way and that volatility only lasts for a short period of 

time unless p is large (Boudrioua & Boudrioua, 2020; Engle, 1982; Kumari & Tan, 2018). 

 

Generalized Autoregressive Conditional Heteroskedasticity (GARCH) is an extension of this 

method that explains how to estimate changes in time-dependent volatility.  Bollerslev (1986) 

suggests changing the ARCH model to the GARCH family, which has volatility that varies at 

random (Angelidis et al., 2004; Bollerslev, 1986; Shahraki & Alimardani, 2020).  

Equation (9) illustrates the GARCH(p, q) model in its general form. Past volatility that could 

impact the present is incorporated into this model.  

𝜎𝑡 =  𝛼0 +  ∑ 𝛼𝑖𝜀𝑡−1
2

𝑝

𝑖=1

+  ∑ 𝛽𝑖𝜎𝑡−1
2

𝑞

𝑖=1

. (9) 
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The coefficients of ARCH and GARCH are 𝛼𝑖 and 𝛽𝑖, where 𝛼 > 0, and 0 < 𝛽 < 1. The residuals' 

ACF and PACF aid in defining the GARCH orders, 𝑝 and 𝑞. GARCH(p, q) = ARCH(p) if 𝑞 =  0. 

 

Dickey & Fuller (1979) determines whether 𝜙 = 0 in the autoregressive (AR) time series model, 

as indicated by Equation (10), and tests the null hypothesis that a unit root exists in the model.  

Δ 𝑦𝑡 = (𝑦𝑡 − 𝑦𝑡−1) =  𝛼 +  𝛽𝑡 +  𝛾𝑦𝑡−1 +  𝜀𝑡 (10) 

 

The study variable is 𝑦𝑡, and the first difference operator is Δ. If 𝛾 = 0, then a random walk process 

is in place. If −1 <  𝛾 + 1 < 1, the process is stationary. However, the Augmented Dickey-Fuller 

test is applied to higher-order autoregressive processes by including ∆ 𝑦𝑡−𝑝 in the model. The null 

hypothesis asserts that the data are not stationary for both tests. 
Δ 𝑦𝑡 = (𝑦𝑡 − 𝑦𝑡−1) =  𝛼 +  𝛽𝑡 +  𝛾𝑦𝑡−1 + 𝛿1Δ 𝑦𝑡−1 +  𝛿2Δ 𝑦𝑡−2 + ⋯. (11) 

 

The normality of the time series data is examined using the Jarque-Bera test of skewness and 

kurtosis. There is never a negative test statistic. It indicates that the data does not have a normal 

distribution if it is far from zero.  The definition of the test statistic is: 
4𝑁𝑆2+6𝑁(𝐾−3)2

24
 ~ 𝜒2. (12) 

 

where the numbers S, K, and N stand for skewness, kurtosis, and the number of observations, 

respectively. It is possible to model the variance change using an autoregressive process, like 

ARCH, if it can be correlated over time (Jarque & Bera, 1980, 1981, 1987). 

 

The general procedure for a GARCH model can be summed up in three steps: estimating a best-

fitting autoregressive model, calculating the error term's autocorrelations, and testing for 

significance. 

 

GARCH models have limitations even though they are helpful in a variety of applications 

(Gourieroux, 1997; Magnus & Fosu, 2006): 

• The best conditions for GARCH models, which are parametric specifications, are time series 

that are reasonably stable. The purpose of GARCH is to model conditional variances that change 

over time. GARCH models, however, frequently fall short in describing extremely irregular 

phenomena. These include erratic market swings and other unforeseen circumstances that have 

the potential to cause major structural change. 

• The fat tails seen in asset return series are frequently not adequately captured by GARCH 

models. A portion of the fat-tail behavior can be explained by heteroscedasticity, but not all of 

it. Fat-tailed distributions, like Student's t, have been used in GARCH modeling to make up for 

this restriction. 
 

According to the GARCH model, the conditional variance at time t is dependent on the series' 

historical squared errors (𝜀2) and conditional variances (𝜎2). The impact of previous squared 

errors and conditional variances on the current conditional variance is indicated by the 𝛼 and 𝛽 

parameters, respectively. The series' long-term average level of variance is denoted by the 𝜔 term. 

 

The steps that follow can be taken for the GARCH model: 
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• Remove any serial correlation from the data and create an ARIMA model for the stationary data. 

The ARCH effect can be verified using the model's residual series. To determine whether the 

data is conditionally heteroscedastic, the Box-Pierce (Ljung-Box) test is employed. 

• ACF and PACF of the ARIMA model's squared residuals: The purpose of these plots is to 

determine the GARCH orders, r and s, respectively. 

 

3.3 Hybrid Box-Jenkins–GARCH Models 

A linear ARIMA model and the conditional variance of a GARCH model are combined to create 

the hybrid univariate Box-Jenkins–GARCH model, a nonlinear time series model. The maximum 

likelihood approach is the foundation of the GARCH and ARIMA models' estimation processes. 

The nonlinear Marquardt's algorithm is used to estimate parameters in the logarithmic likelihood 

function (Chen et al., 2011; Marquardt, 1963; Schwarz, 1978).  
 

The proposed model combines the non-linear GARCH model with the linear time series ARIMA 

model. The suggested hybrid model of Box-Jenkins and GARCH has a two-stage process (Liu & 

Shi, 2013; Liu et al., 2013; Miswan, Ping, & Ahmad, 2013).  

• The linear data of time series is modeled in the first stage using the best univariate Box-Jenkins 

model; the residual of this linear model will only include the nonlinear data.  

• The nonlinear patterns of the residuals are modeled in the second stage using the GARCH.  

In this process, it is said that the ARIMA model's error term follows a GARCH process of orders 

p and q. Equation (13) provides the following description of the form: 

𝜎𝑡
2 =  𝛼0 +  ∑ 𝜑𝑖𝜀𝑡−𝑖

2

𝑞

𝑖=1

+  ∑ 𝜇𝑖𝜎𝑡−𝑖
2

𝑝

𝑖=1

 (13) 

Before beginning to estimate the GARCH model, it is necessary to investigate whether 

heteroscedasticity exists in time series data. The absence of serial correlation will show that 

GARCH can be used to estimate the conditional variance for the errors. 
 

These two models are combined in the hybrid model to capture the time series data's volatility 

clustering and seasonal patterns. The time series' mean is modeled by the univariate Box-Jenkins 

component, and its volatility is modeled by the GARCH component.  

 

The variance of the univariate Box-Jenkins model's error term follows a GARCH process in the 

SARIMA-GARCH model. Equation (14) can be used to express the model. The following is the 

standard expression for the GARCH formula: 

𝑆𝑡  =  𝜇 +  𝜖𝑡 ,     𝜖𝑡 =  𝜎𝑡𝜀𝑡,   𝜎𝑡
2  =  𝜔 + ∑ 𝛼𝑖

𝑟

𝑖=1

 𝜀𝑡−𝑖
2  +  ∑ 𝛽𝑗

𝑆

𝑗=1

𝜎𝑡−𝑗
2  (14) 

𝑆𝑡 and 𝜖𝑡 represent the stationary time series data and random error at time t, respectively, and μ 

represents the conditional mean of 𝑆𝑡. The conditional variance of the error term at time 𝑡 is 

denoted by  𝜎𝑡
2, while the long-term average variance of the error term is represented by the 

constant term 𝑡 , 𝜔. The residual error at time t, denoted by 𝜖𝑡, has a continuous distribution with 

zero-mean I.I.D. The lagged squared error terms' coefficients are 𝛼𝑖, where 𝛼0 = 0, and 𝛼𝑖  ≥  0 

for 𝑖 =  1, 2, . . . , 𝑟. The coefficients for the lagged conditional variance terms are 𝛽𝑗, where 𝛽0  =

 0 and 𝛽𝑗  ≥  0  for 𝑗 =  1, 2, . . . , 𝑠.          
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These two models are combined in the hybrid model to capture the time series data's volatility 

clustering and seasonal patterns. The time series' mean is modeled by the SARIMA component, 

and its volatility is modeled by the GARCH component. The variance of the SARIMA model's 

error term follows a GARCH process in the SARIMA-GARCH model. Equation (15), and (16) 

can be used to express the model. 

𝛷𝑃(𝛣𝑆)𝜑𝑝(𝛣)(1 − 𝛣)𝑑(1 − 𝛣𝑠)𝐷𝑦𝑡́  =  𝛩𝑄(𝛣𝑆) 𝜃𝑞(𝛣)𝜀𝑡 (15) 

𝜖𝑡 =  𝜎𝑡𝜀𝑡,   𝜎𝑡
2  =  𝜔 +  ∑ 𝛼𝑖

𝑟

𝑖=1

 𝜀𝑡−𝑖
2  +  ∑ 𝛽𝑗

𝑆

𝑗=1

𝜎𝑡−𝑗
2  (16) 

4. The Proposal Frame 

4.1 Data Set and Software 

• Data Set: the study uses the monthly Saudi General Index for the period January 2015 to June 

2024, https://sa.investing.com. The database is divided into 109 observations in sample and 6 

observations out of sample data. 

• Software: the study uses SPSS, MINITAB, and R, which are currently used on applications. 

4.2 The Suggested Frame 

The study integrates the GARCH and SARIMA models to propose a framework for modeling 

financial time series. The univariate series is analyzed, and the approximation values are predicted 

using this hybrid model, which combines a SARIMA model with GARCH error components. The 

ARIMA model's error term εt is said to follow a GARCH process of orders r and s in this process. 

 

Figure 1. Frame of Hybridization of Box-Jenkins and GARCH Models 
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The suggested hybrid model combines GARCH and SARIMA in a two-phase process.  

1. The first step involves modeling the linear data of time series using the best SARIMA models; 

only the nonlinear data will be included in the linear model's residual.  

2. The second step involves modeling the residuals' nonlinear patterns using the GARCH. 

The following steps make up the parameter estimation procedure for the SARIMA-GARCH 

model:  

1. Analysis of Stationarity and Seasonality: To ascertain whether the time series is stationary 

and shows any seasonal patterns, apply statistical tests such as the ADF test and the Seasonal 

Decomposition of the Time Series method, respectively. 

2. SARIMA Parameter Estimation: Use MLE to estimate the parameters of the model's 

SARIMA component. This entails choosing the proper sequences for the model's AR, MA, SAR, 

and SMA components. 

3. Finding the best models involves comparing the performance of suggested models using 

MSE, MAE, MAPE, AIC, and BIC.  

4. Estimating GARCH Parameters: Use MLE to estimate the parameters of the model's GARCH 

component. To do this, the model's ARCH and GARCH components must be chosen in the proper 

order. 

Model Selection: Select the appropriate SARIMA-GARCH model based on the AIC and BIC as 

proposed by Equation (17) and (18), respectively. The AIC or BIC with the lowest value is 

preferred in the model selection criteria. Model selection is done using the Bayesian information 

criterion (BIC) and the Akaike information criterion (AIC). An assessment of a model's fit to the 

data it was created from is done mathematically using the AIC.  
𝐴𝐼𝐶 =  2𝐾 −  2𝑙𝑛(𝐿) (17) 

The number of independent variables used is denoted by K, and the log-likelihood estimate, or the 

probability that the model could have generated your observed y-values, is determined by L. 
𝐵𝐼𝐶 =  −2 𝑙𝑛 (𝐿)  +  𝐾 𝑙𝑛(𝑁) (18) 

The best model for forecasting future observations can be found using the AIC, whereas the BIC 

is more helpful in choosing the right model.  A crucial step in the modeling process is diagnostic 

checking, which enables us to assess the model's suitability and spot any possible flaws.  

Diagnostic checking is crucial for SARIMA-GARCH models to ensure accurate representation of 

time series and volatility components, incorporating serial correlation, heteroscedasticity, and 

normality tests to ensure white noise behavior. The model residuals' ACF and PACF can be plotted, 

and the Box-Pierce (Ljung-Box) Chi-Square statistic test can be used to determine whether the 

residuals exhibit serial correlation (Garai et al., 2023; Hillmer & Tiao, 1982).  

Forecast accuracy, which is frequently represented as a percentage or numerical score, gauges how 

well a model predicts future events. It needs to be tested and updated frequently to stay relevant. 

Equations (19), (20), and (21) provide the MAE (Mean Absolute Error), RMSE (Root Mean 

Squared Error), and MAPE (Mean Absolute Percentage Error), which are common indicators of 

forecast accuracy. 
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𝑀𝐴𝐸 =
1

𝑛
∑|𝑦𝑡 −  𝑦̂𝑡|

𝑛

𝑡=1

 (19) 

𝑅𝑀𝑆𝐸 =  √
∑ (𝑦𝑡 −  𝑦̂𝑡)2𝑛

𝑡=1

𝑛
 (20) 

𝑀𝐴𝑃𝐸 =  
1

𝑛
∑ |

𝑦𝑡 − 𝑦̂𝑡

𝑦𝑡
|

𝑛

𝑡=1

 (21) 

The number of out-of-sample data is denoted by 𝑛, while 𝑦𝑡 and 𝑡 represent the observed and 

predicted values at time 𝑡, respectively. The model that produces the smallest prediction error is 

the most effective forecasting model. 

5. Results and discussion 

The first step in the identification process is to see if the Saudi General Index time series movement 

exhibits seasonality and an upward or downward trend, as illustrated in Figure (1). 

 

  
Figure 2. (a) Plot of the time series of monthly Saudi 

General Index 
(b) Plot of the first different of monthly Saudi General 

Index  

The Saudi General Index series does not fluctuate around a fixed level, as seen in Figure (2, a), 

indicating that its mean and seasonal trend are non-stationary. Following a one-lag difference to 

the transformed series, the series becomes stationary. As seen in Figure (2, b), the transformed 

series is visible. 

 

 
 

Figure 3. ACF and PACF for the Time Series of Monthly Saudi General Index 

 

 
Figure 4. ACF and PACF for the First Differenced Transformed Series 
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Since the first difference of the time series data passed the Shapiro-Wilk normality test with W = 

0.9798 and a p-value of 0.08513, we are unable to rule out the null hypothesis that the sample was 

drawn from a normal distribution. 

 
Table 2. Stationarity Tests in Time Series Data 

Box-Pierce test 

X-Squared D.F. P-Value 

105.8 1 2.2e-16 

Augmented Dickey-Fuller test 

Dicky-Fuller Lag Order P-Value 

-3.4606 4 0.04889 

Phillips-Perron Unit Root Test 

Dicky-Fuller Z (alpha) Truncation Lag Parameter P-Value 

-111.413 4 0.4553 

 

Phillips-Perron Unit Root, Box-Pierce, and Augmented Dickey-Fuller tests are displayed in Table 

(2). Data differencing is required because these tests show that the null hypothesis is not rejected, 

indicating that the unit root is present in the data series. Figures (3) and (4) show that the seasonal 

trend is confirmed by the ACF and PACF spikes on one side. 

5.1 Univariate Box Jenkins Models 

Table (3) displays the estimation results using the ordinary least squares method at a significance 

level of 0.05 with values for the Akaike and Schwarz information criteria. SARIMA(1,1,1)(0,1,1)3, 

SARIMA(1,1,1)(1,2,1)6, and SARIMA(2,2,0)(2,1,1)4 are the best SARIMA models for the 

observed series, as they have the lowest forecasting error metrics. 

 
Table 3. Forecasting Error Metrics of Significant SARIMA Models 

 

SARIMA(1,1,1)(0,1,1)3 : 

 

Model ME RMSE MAE MPE MAPE MASE AIC 

SARIMA(1,1,1)(0,1,1)3 32.103 477.5 374.26 0.3325 4.275 0.965 1688.5 

SARIMA(1,1,1)(1,2,1)3 20.406 553.0 401.75 0.4070 4.630 1.036 1691.4 

SARIMA(1,1,1)(2,1,0)3 24.218 532.8 399.85 0.2531 4.577 1.031 1711.1 

SARIMA(1,1,1)(1,2,1)6 3.7931 553.1 406.22 0.1604 4.675 4.675 1614.1 

SARIMA(1,2,0)(2,1,1)4 9.2376 587.9 469.21 0.12131 5.320 1.210 1717.9 

SARIMA(2,2,0)(2,1,1)4 16.909 524.6 409.51 0.25044 4.762 1.056 1697.2 

SARIMA(1,2,0)(1,1,1)4 11.004 585.9 460.06 0.13881 5.238 1.187 1719.0 

SARIMA(2,2,0)(1,1,1)4 19.863 522.7 397.57 0.28152 4.630 1.026 1697.6 
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Figure 5. The Characteristic Roots and ACF and PACF Residuals of the for SARIMA(1,1,1)(0,1,1)3  

The residuals plots for SARIMA(1,1,1)(0,1,1)3 are displayed in Figure 5, along with the ACF and 

PACF of residuals. These spikes are not significant, suggesting that there is no correlation between 

the residuals. 
 
Table 4. Final Estimates of Parameters of SARIMA(1,1,1)(0,1,1)3 Model 

Type Coef SE Coef T P 

AR -0.7521 0.0903 -8.30 0.000 

MA -0.9407 0.0903 -25.18 0.000 

SMA 0.9534 0.0452 21.11 0.000 
 

The final estimates for the SARIMA(1,1,1)(0,1,1)3 parameter are shown in Table (4); the 

parameter's P-value is less than 0.05. Thus, the model fits the data well, as evidenced by the 

parameters' large deviation from zero.  
 

Table 5. Modified Box-Pierce (Ljung-Box) Chi-Square statistic for testing the conditional heteroscedasticity 

SARIMA(1,1,1)(0,1,1)3 Model  

 

Table (5) displays the SARIMA(1,1,1)(0,1,1)3 model's modified Box-Pierce (Ljung-Box) Chi-

Square statistic. With a P-value greater than 0.05, the Box-Pierce (Ljung-Box) Chi-Square test is 

not significant. The residuals thus seem to be uncorrelated. Since the model's parameters deviate 

significantly from zero and the residuals show no correlation, the SARIMA(1,1,1)(0,1,1)3 model 

Modified Box-Pierce test 

lag 12 24 36 48 

Chi-Square 2.5 13 18.2 29.7 

DF 9 21 33 45 

P-Value 0.98 0.90 0.98 0.96 

Ljung-Box test 

Q* = 3.8968                     d.f = 7                   p-value = 0.7916 
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seems to fit well and can be used to forecast. LM-test for ARCH; null hypothesis: no ARCH 

effects. df = 1, p-value = 0.2493, chi-squared = 1.3275. Thus, the null hypothesis that there is no 

ARCH effect cannot be rejected.  
 

Table 6. The comparison between actual Saudi General Index and forecast price for an out-sample period by 

SARIMA(1,1,1)(0,1,1)3 

Month Actual Index Forecast Index 

01-2024 11796.63 12272.5 

02-2024 12630.86 12068.2 

03-2024 12401.56 12166.1 

04-2024 12394.91 12353.9 

05-2024 11503.49 12237.5 

06-2024 11498.93 12269.5 

The results of forecasting the Saudi General Index from January to June 2024 using 

SARIMA(1,1,1)(0,1,1)3 are displayed in Table (6). 

SARIMA(1,1,1)(1,2,1)6 
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Figure 6. The Characteristic Roots and ACF and PACF Residuals of the for SARIMA(1,1,1)(1,2,1)6 

 

SARIMA(1,1,1)(1,2,1)6 and ACF and PACF residual plots are shown in Figure (6), where 

nonsignificant spikes signify uncorrelated residuals. 

 
Table 7. Final Estimates of Parameters of the SARIMA(1,1,1)(1,2,1)6  

Type Coef SE Coef T P 

AR1 -0.6929    0.0917 -7.55 0.000 

SAR6 -0.5460 0.0915 -5.97 0.000 

MA1 -0.9488 0.0461 -20.58   0.000 

SMA6 0.8994 0.0792 11.35 0.000 
 

With uncorrelated residuals and significant parameter deviations, the SARIMA(1,1,1)(1,2,1)6 

model has a P-value less than 0.05, as shown in Table (7). 
 
Table 8. Modified Box-Pierce (Ljung-Box) Chi-Square statistic of the check the conditional heteroscedasticity 

SARIMA(1,1,1)(1,2,1)6 

lag 12 24 36 48 

Chi-Square 11.5 22.7 31.4 42.9 

DF 8 20 32 44 

P-Value 0.175 0.302 0.496 0.518 

Ljung-Box test 

Q* = 5.4705                                 d.f = 6                             p-value = 0.485 

ARCH LM-test 

Chi-squared = 0.58498                d.f = 1                            p-value = 0.4444 

Nonsignificant Ljung-Box statistics, which show uncorrelated residuals as discrete white noise, 

are shown in Table (8). The null hypothesis is supported by the p-values of the Ljung-Box and 

Lagrange multiplier tests, which show that the data series does not exhibit an ARCH effect. 
 
Table 9. The comparison between actual price and forecast price for an out-sample period by SARIMA(1,1,1)(1,2,1)6 

Month Actual Index Forecast Index 

01-2024 11796.6 12113 

02-2024 12630.9 11685.7 

03-2024 12401.6 11709.3 

04-2024 12394.9 11928.7 

05-2024 11503.5 12036 

06-2024 11498.9 12853.9 
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SARIMA(2,2, 0)(2,1,1)4  

 

 

 
Figure 7. The Characteristic Roots and ACF and PACF Residuals of the for SARIMA(2,2,0)(2,1,1)4 

 
Table 10. Final Estimates of Parameters of the SARIMA(2,2,0)(2,1,1)4 

Type Coef SE Coef T P 

AR1 -0.6346 0.0920 -6.90 0.000 

AR2 -0.4962 0.0882 -5.62 0.000 

SAR4 -0.4356 0.1034 -4.21 0.000 

SAR8 -0.2952 0.1035 -2.85 0.005 

SMA4 0.9234 0.0558 16.54 0.000 

Table (10) displays the results of OLS estimation at 0.05 significance using the Schwarz 

information criterion and Akaike information criterion, which indicate that the SARIMA model is 

significant (SARIMA(2,2,0)(2,1,1)4).  
 

Table 11. Modified Box-Pierce (Ljung-Box) Chi-Square statistic of the check the conditional heteroscedasticity 

SARIMA(2,2,0)(2,1,1)4 

lag 12 24 36 48 

Chi-Square 12.9 17.3 32.8 41.6 

DF 7 19 31 43 
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P-Value 0.074 0.572 0.377 0.531 

Ljung-Box test 

Q* = 11.881                               d.f = 10                            p-value = 0.293 

ARCH LM-test 

Chi-squared = 4.3051               d.f = 1                               p-value = 0.038 
 

Furthermore, Table (11) demonstrates that the Ljung-Box statistics yield nonsignificant results (P-

value > 0.05), suggesting that the residuals are uncorrelated and represent discrete white noise. 

Null hypothesis: no ARCH effects; ARCH LM-test Since chi-squared = 4.3051, d.f. = 1, and p-

value = 0.038, the null hypothesis is rejected. When conditional variance in a data series is not 

constant over time, the ARCH effect takes place. 

 

The Box-Pierce (Ljung-Box) test indicates that the SARIMA(2,2,0)(2,1,1)4 model is 

heteroscedastic, as shown in Table (11). The model needs to be used in conjunction with the 

GARCH model in order to control the volatility in the data series. The Jarque-Bera test is used for 

the normalcy test. The assumption of normalcy has been satisfied when the p-value is greater than 

0.05. However, because the model's p-value is less than 0.005, the assumption of normalcy is not 

satisfied. The hybrid ARIMA-GARCH approach was used to compare the residuals of the ARIMA 

models with those of the GARCH models. To model the variance behavior in our study, we used 

the conventional GARCH (1,1) model. 

5.2 Combined Box-Jenkins and GARCH Models  

Univariate Box Jenkins models, like ARIMA models, explain the linear portion of the time series, 

while GARCH models, which are derived from the residual series of an ARIMA model, explain 

the nonlinear features. The ARIMA model under consideration was unable to address the 

heteroscedasticity present in the data series, and the ARCH effect was observed in data series 

where conditional variance was not constant over time. The time series data was first fitted using 

Box-Jenkins models. If there is an ARCH effect in the residuals, GARCH is fitted.  

 
Table12. Estimation results for SARIMA(2,2,0)(2,1,1)4-GARCH(1, 1) 

Parameter Value Std Error T-Statistic     Pr(>|t|) 

mu 19.0010 24.10481 3.268675 0.430539 

AR1 0.56255 0.172104 3.268675 0.001081 

MA1 -0.7827 0.126555   -6.184658 0.000000 

Omega 278.068 7312.340 0.038027 0.969666 

Alpha1 0.00000 0.029981 0.000001 1.000000 

Beta1 0.99900 0.004298 232.422998 0.000000 

Information 

Criteria 

Akaike Bayes Shibata Hannan-Quinn 

15.399 15.543 15.394 15.458 

 

The results of estimating SARIMA(2,2,0)(2,1,1)4-GARCH(1,1) using maximum likelihood 

estimation are displayed in Table (12). For all symmetric GARCH models taken into consideration, 

the results were found to be statistically significant and preferred at the 0.05 significance level.  
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Figure 8. Analysis of Financial Time Series and Residuals: Volatility, Autocorrelations, and Distributional Properties 

 

Table 13. Forecasting Error Metrics of Significant SARIMA Models 

Model ME RMSE MAE MPE MAPE MASE 

SARIMA(1,1,1)(0,1,1)3 32.103 477.55 374.26 0.3325 4.2756 0.9659 

SARIMA(1,1,1)(1,2,1)6 3.7931 553.14 406.22 0.3604 4.6751 4.6751 

SARIMA(2,2,0)(2,1,1)4 16.909 524.64 409.51 0.2504 4.7627 1.0569 

SARIMA(2,2,0)(2,1,1)4-

GARCH(1,1) 
1.5769 57.351 38.228 0.2062 4.2474 1.0001 
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Table 14. The comparison between actual Saudi General Index and forecast price for out-sample period by Hybrid 

Model. 

Month Actual Index Forecast Index 

01-2024 11796.63 11967.39 

02-2024 12630.86 12796.63 

03-2024 12401.56 12630.86 

04-2024 12394.91 12401.56 

05-2024 11503.49 11994.91 

06-2024 11498.93 11669.05 
 

The forecast results are based on three evaluation criteria that have been widely used in prior 

literature: mean absolute error (MAE), root mean square error (RMSE) and mean absolute 

percentage error (MAPE). The series of out-of-sample transformed data, which comprises six 

observations, is used in the forecasting stage. MAE, RMSE, and MAPE forecast evaluations are 

38.2284, 57.35, and 4.247, respectively. 

6. Conclusion and Remark 

The goal of this study is to improve the effectiveness of financial time series forecasting by 

combining univariate Box-Jenkins and GARCH models. The empirical findings show that the 

linear limitation of the SARIMA and GARCH models can be overcome by the combining model 

of SARIMA(2,2,0)(2,1,1)4-GARCH(1,1). The Box-Jenkins-GARCH combination is a novel 

method for financial time series forecasting since it combines the ability of GARCH to handle 

volatility with the ability of the Box-Jenkins model to generate forecasts based on historical 

patterns.  Initially, the ARIMA model fits the time series data. GARCH is fitted if the residuals 

exhibit the ARCH effect. The final prediction is derived from the aforementioned condition. 
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