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 This research paper uses the Bayesian approach to establish an approximate method to 

specify the four orders of multivariate seasonal autoregressive moving average 

(SARMA) models. The proposed methodology consists of four coherent consecutive 

steps. The first step is the approximation of the likelihood function of the model’s 

parameters by a matrix Normal–Wishart form. The second step is to use a proposed 

semi-intermediate Bayesian procedure to have initial estimates for the four model 

orders. The third step is to combine the approximate likelihood function and the initial 

orders prior with one of the matrix Normal–Wishart prior density or Jeffreys’ vague 

prior to developing an approximate joint posterior probability mass function of the 

orders of the model in a simple form. The last step is to evaluate the posterior 

probabilities over the range of the four orders and pick out the values of the orders at 

which the joint probability mass function reaches the highest probability to be the 

identified orders of the multivariate seasonal time series being analyzed. To test the 

adequacy of the proposed methodology, two simulation studies with three different 

prior orders have been conducted. The numerical results showed that the proposed 

Bayesian methodology is adequate to identify the orders of multivariate SARMA 

models for medium and large time series lengths. 

 

1. Introduction 
Analysis of seasonal multidimensional time series is one of the most important and major topic 

and may be found in most fields of scientific research such as economics, meteorology, hydrology, 

and utilities. An economist might be interested in using a three-dimensional model to check the 

interdependencies among quarterly sales volume, sales prices, and advertising costs for a product. 

Using a three-dimensional model, a meteorologist may be willing to model and forecast the hourly 

temperature, air pressure, and humidity percentages. A hydrologist sometimes wants to employ a 

four-dimensional model to examine the feedback relationships between stream flow series at four 

points along a river. In utilities, one may use the two-dimensional model to model and forecast the 

monthly consumption of electricity and gas. Such variables and others are modeled and predicted 

jointly using a multidimensional (vector) model to test the dynamic interrelationship between 

variables and to raise the accuracy of the obtained estimates and forecasts; for more details see 

Tiao and Box (1981), Tsay (2014), Brockwell and Davis (2016), Box et.al. (2016) and Wei (2019). 

There is no doubt that the parametric class of seasonal multidimensional (vector) autoregressive 

moving average models, abbreviated by SVARMA for short, is the widely accepted class of models 

to analyze multivariate time series arise in many areas of application, especially in economics, 
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since it is the most parsimonious one and is a closed set under linear transformation  (see Lütkepohl, 

2007). In addition, the goodness of the forecasts achieved by this class outruns the ones obtained 

by the pure multivariate autoregressive models  (See for details Hagnell (1991), Athanasopoulos 

and Vahid (2008), Raghavan et al. (2009) and Kascha (2012)). Moreover, SVARMA is more 

compatible with economic theory than the pure vector autoregressive models  (See Cooley and 

Dwyer (1998)). VARMA models were first used by Quenouille (1957). Since then, they have 

become an important and serious topic for theoretical and applied researchers in multidimensional 

time domain analysis such as: Tiao and Box  (1981), Tiao and Tsay  (1983), Tsay (1989), Reinsel 

(1997) and Athanasopoulos and Vahid (2008).  

In SVARMA analysis, the first and most important stage is identifying the process orders p, q, P, 

and Q that might generate the available data set. p is the nonseasonal (regular) autoregressive order 

and q is the nonseasonal (regular) moving average order; while P is the seasonal autoregressive 

order, and Q is the seasonal moving average order. This stage is very crucial since the accuracy of 

all the succeeding stages (estimation, diagnostic checking, and forecasting) depends on its 

accuracy. The four orders p, q, P, and Q are often not known, and we have to use a convenient 

algorithm to identify them using the observed time series. 

Regarding the seasonal univariate autoregressive moving average processes, Box and Jenkins have 

explored their predominant non-Bayesian methodology to identify the orders by matching the 

patterns of both the sample autocorrelation and partial autocorrelation functions with the known 

theoretical patterns of autocorrelation and partial autocorrelation functions autocorrelation and 

partial autocorrelation functions. Their methodology has been illustrated and used by many others 

such as Priestley (1981), Tsay (1984), Harvey (1993), Wei (2005), Liu (2009), Wei (2019), Box et 

al. (2016), Brockwell and Davis (2016) and Chatfield (2019). Another prevailing non-Bayesian 

class of methods to identify the orders of univariate time series is known as the exploratory or the 

objective approach. The approach starts by fitting all possible autoregressive moving average 

models, assuming the maximum orders are known, and computing a certain criterion for each 

model; then we may pick out the model with the optimal value of the proposed criterion. However, 

the researchers do not agree about the form of the criterion that should be optimized. Akaike’s 

Information Criterion (AIC), introduced by Akaike (1974), is considered one of the most preferred 

and well-known exploratory techniques. Other exploratory techniques were introduced by 

Schwarz (1978), Risanen (1978), Hannan and Quinn (1979) and Beveridge and Oickle (1994). 

However, we should observe that the use of any automatic technique for identifying seasonal 

models is costly and time-consuming. 

With respect to the Bayesian approach to specifying orders for univariate processes, Monahan 

(1983) has introduced a numerical method to solve the identification problem of non-seasonal 

processes with low orders. Assuming the maximum orders are known, Broemeling and Shaarawy 

(1988) have introduced an approximate analytical algorithm for identifying the orders of non-

seasonal processes depending on t distribution. Shaarawy and Ali (2003) have initiated a solution, 

based on the Bayesian approach, to identify the orders of pure seasonal autoregressive models. 

Moreover, Shaarawy et al. (2007) have conducted an approximate algorithm to achieve a joint 

mass probability posterior distribution of the orders of pure non–seasonal moving average 

processes.  
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By comparing the sample cross-correlation functions with their theoretical patterns, Tiao and Box 

(1981), Tiao and Tsay (1983) and others have studied non-Bayesian identification problems of 

multidimensional processes. However, the Bayesian techniques to the identification problems of 

multidimensional processes have recently been studied. Shaarawy and Ali (2008) have laid the 

foundations of the Bayesian solutions for identifying orders for pure non-seasonal 

multidimensional autoregressive models by deriving an exact convenient formula for the joint 

probability mass function of the model order. More recently, Shaarawy and Ali (2015) continued 

to explore a new approximate algorithm for identifying the orders of pure seasonal 

multidimensional autoregressive models. Later on, Shaarawy (2021) has developed a complete 

approximate analysis to solve the problems of identification, estimation, diagnostic checking, and 

forecasting for non-seasonal multidimensional autoregressive moving average processes. 

Regarding the seasonal multidimensional autoregressive moving average processes, we can say 

that a pure Bayesian procedure for the identification stage has not been discovered yet.  

A Basic difficulty with the identification problems of the seasonal multidimensional autoregressive 

moving average processes is that there is no convenient form for likelihood function as a function 

of the parameters directly. An enormous number of calculations are indispensable to compute the 

likelihood function for any point in the parameter space; thus, as the time series length becomes 

large, the computation of the likelihood function becomes increasingly exhausted even for 

effective computers. On the analytical side, as compared with purely numerical, a convenient 

Bayesian identification of seasonal multidimensional autoregressive moving average processes is 

impossible unless we find a way to represent the likelihood function in a simple way to achieve 

analytically tractable posterior mass function for the model order. This causes a challenging 

problem, for both Bayesians and those interested in maximum likelihood estimation.  The 

fundamental target of the current paper is to derive an approximate joint posterior probability mass 

function for the orders of seasonal multidimensional autoregressive moving average processes in 

a convenient form using a matrix Normal–Wishart or Jeffreys' vague prior. Then we can easily 

calculate posterior probabilities for all the possible values of the model’s orders over their domain 

and select the values at which the probability reaches its highest value to be a solution to the 

identification problem. Two Monte Carlo simulation studies, with three different priors, were 

carried out to demonstrate the idea of using the proposed algorithm and assess its numerical 

performance. The numerical performance  will be checked for the two-dimensional ARMA models 

based on the parameter’s values and sample sizes. The two-dimensional model is quite useful in 

modeling and forecasting two variables where the dependencies between them are important and 

where analyzing variables individually loses important aspects of the data. 

 

2. Seasonal Vector ARMA Processes 
The vector time series y(t) of dimension k is said to be generated from a seasonal vector 

autoregressive moving average (SVARMA) model with orders p, q, P and Q, which are four positive 

integers, if it has the form  

         
( )( ) ( ) ( ) ( ) ( ) , , (2.1)s s

p P q QB B y t B B t     t 1,2,...,n                                             =  =  

where  

2
1 2( ) ,p

p k pB I B B B   = − − − −  2
1 2( ) ,s s s Ps

P k pB I B B B = −  −  − −   

 
'

( ) ( ,1) ,y t y t      y(t,2)...     y(t,k)=  2
1 2( ) ... q

q k qB I B B B ,   = − − − −  
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2
1 2( ) ...s s s Qs

Q k QΘ B I B B B= −  −  −  , and  
'

,1(t) (t )     (t,2)...     (t,k)   =  

 

Ik is the identity matrix of rank k, B is the back-shift operator defined as [Br y(t)] = y(t – r), s is the 

periodicity of the time series, ϕi’s, θi’s, Φi’s, and Θi’s are matrices of real unknown coefficients, 

each of order k×k. Moreover, {ε (t)} is a sequence of random errors vectors that are identically 

independent and normally distributed with zero mean vector and a k×k unknown precision matrix 

T. Furthermore, ( )p B , ( )s
P B , ( )q B  and ( )s

Q B are k×k matrix polynomials in B having 

degrees p, Ps, q and Qs respectively. In the literature on time series analysis, ( )p B and ( )s
P B  

are defined as the non-seasonal and seasonal autoregressive operators with orders p and Ps 

respectively; while ( )q B and ( )s
Q B  are defined as the non-seasonal and seasonal moving 

average operators with orders q and Qs respectively. The stationarity condition of the process y(t) 

is that the zeros of the determinantal polynomials ( )p B and ( )s
P B are all outside the unit 

circle and the invertibility condition is that the zeros of the determinantal polynomials ( )q B and 

( )s
Q B are all outside the unit circle.     

 To express the class of models (2.1) in explicit form, we condition on the first (p+Ps) vectors of 

observations, then: 

( , , , ) ( , , , ) (2.2)p q P Q p q P Q U                                                                       =   +  

Where   is a time series matrix of dimension (n-p-Ps)×k where the ij-th element is referred to as 

y(p+Ps+i,j) and X(p,q,P,Q) is a matrix of dimension (n-p-Ps) ×kh, where h = p+P+pP+q+Q+qQ, 

defined as, 

1 2 1 1 1 2... ...2 2 p q X X       X       Z       Z      R      R     R      H       H     H      =
 

 

where 

            𝑋1 =  [

𝑦′(𝑝 + 𝑃𝑠)                 𝑦′(𝑝 + 𝑃𝑠 − 1)     ⋯  𝑦′(𝑃𝑠 + 1)

𝑦′(𝑝 + 𝑃𝑠 + 1)         𝑦′(𝑝 + 𝑃𝑠)            ⋯  𝑦′(𝑃𝑠 + 2)
      ⋮                                ⋮                                             ⋮
𝑦′(𝑛 − 1)                  𝑦′(𝑛 − 2)                ⋯  𝑦′(𝑛 − 𝑝)

] , 

              𝑋2 =  [

−𝜀′(𝑝 + 𝑃𝑠)             − 𝜀′(𝑝 + 𝑃𝑠 − 1)    …     − 𝜀′(𝑝 + 𝑃𝑠 + 1 − 𝑞)

−𝜀′(𝑝 + 𝑃𝑠 + 1)        − 𝜀′(𝑝 + 𝑃𝑠)           ⋯      − 𝜀′(𝑝 + 𝑃𝑠 + 2 − 𝑞)
       ⋮                                              ⋮                                             ⋮
−𝜀′(𝑛 − 1)                   − 𝜀′(𝑛 − 2)             ⋯         − 𝜀′(𝑛 − 𝑞)

] , 

                𝑍1 =  [

𝑦′(𝑝 + 𝑃𝑠 + 1 − 𝑠)            𝑦′(𝑝 + 𝑃𝑠 − 1)               ⋯        𝑦′(𝑝 + 1)

𝑦′(𝑝 + 𝑃𝑠 + 2 − 𝑠)            𝑦′(𝑝 + 𝑃𝑠 + 2 − 2𝑠)     ⋯        𝑦′(𝑝 + 2)
      ⋮                                             ⋮                                                     ⋮
𝑦′(𝑛 − 𝑠)                              𝑦′(𝑛 − 2𝑠)                        ⋯       𝑦′(𝑛 − 𝑃𝑠)

] , 
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      𝑅𝑖 =  [

−𝑦′(𝑝 + 𝑃𝑠 − 𝑠 − 𝑖 + 1)   − 𝑦′(𝑝 + 𝑃𝑠 − 2𝑠 − 𝑖 + 1)   ⋯  − 𝑦′(𝑝 − 𝑖 + 1)

−𝑦′(𝑝 + 𝑃𝑠 − 𝑠 − 𝑖 + 2)   − 𝑦′(𝑝 + 𝑃𝑠 − 2𝑠 − 𝑖 + 2)   ⋯  − 𝑦′(𝑝 − 𝑖 + 2)
      ⋮                                                 ⋮                                                                    ⋮
−𝑦′(𝑛 − 𝑠 − 𝑖)                       − 𝑦′(𝑛 − 2𝑠 − 𝑖)                    ⋯   − 𝑦′(𝑛 − 𝑃𝑠 − 𝑖)

] , 

                                                                                                                                𝑖 = 1, 2, . . . , 𝑝 

And 

     𝐻𝑖 =  [

𝜀′(𝑝 + 𝑃𝑠 − 𝑠 − 𝑖 + 1)     𝜀′(𝑝 + 𝑃𝑠 − 2𝑠 − 𝑖 + 1)   …  𝜀′(𝑝 + 𝑃𝑠 − 𝑄𝑠 − 𝑖 + 1)

𝜀′(𝑝 + 𝑃𝑠 − 𝑠 − 𝑖 + 2)     𝜀′(𝑝 + 𝑃𝑠 − 2𝑠 − 𝑖 + 2)   ⋯  𝜀′(𝑝 + 𝑃𝑠 − 𝑄𝑠 − 𝑖 + 2)
       ⋮                                              ⋮                                                   ⋮
𝜀′(𝑛 − 𝑠 − 𝑖)                       𝜀′(𝑛 − 2𝑠 − 𝑖)                     ⋯    𝜀′(𝑛 − 𝑄𝑠 − 𝑖)

] , 

                                                                                                                                    𝑖 = 1, 2, . . . , 𝑞 

These matrices show that the columns of  the matrix ( ), , ,X p q P Q  consist of the elements of the 

regressors ( 1), ( 2), , ( ), ( 1), ( 2), , ( ),y t y t  y t Ps p t  t   t QS q  − − − − − − − − − − − respectively. 

Furthermore, ( ),  ,  ,p q P Q   is a kh×k matrix of coefficients defined by  

'

1 2( , , , ) (p)   (q)    (P)    (Q)    ( , )   ( , )

kpP k kqQ kkp k kq k kQ kkP k

p p q Q p P q Q   

   
 
 
  =  
 
 
 

,  

where

'
1

'
2

'

,( )

  

kxk

kxk

k k

p

 

 

 

p

 











 
 
 
 
 
 
 
 

=  
 
 
 
 
 
 
 
  

 

'
1

'
2

'

.11 .1

.21 .2

. 1 .

( ) ,

 

kxk

kxk

k k

q

i i.12 i k

i i.22 i k
i

i k i.k2 i kk

 

 

q   

 

     

     
   , i 1,2,...,q

     









  

  


  



 
 
 
 
 
   
   
   

=    
   
     
 
 
 
 
  

= =  

' '

' ' '

2

'( 1 ) ( 1 2 ) ( 1 )

( 2 ) ( 2 2 ) ( 2 )

p Ps s             p Ps s          p Ps Qs

p Ps s             p Ps s           p Ps Qs
 Z  

                                                                  

  

  

− + + − − + + − − + + −

− + + − − + + − − + + −
=

' ' '

,

( ) ( 2 ) ( )

 
                         

n s                          n s                                  n Qs  

 
 
 
 
 
 − − − − − − 
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.11 .1

.21 .2

. 1 .

i i.12 i k

i i.22 i k

i

i k i.k2 i kk

     

     
     , i 1,2,..., p

     

  

  


  

 
 
 
 
 
  

= =  

'
1

'
2

'

.11 .1

.21 .2

.

( ) ,  

  

kxk

kxk

kxk

P

i i.12 i k

i i.22 i k
i

i.k1 i.k2 i kk

P

   

   
, i 1,2,...,P

                      

   

 
 
 
 
 

  
  
  
  
  
  
   

 
 
 
  





 =



  

  
 = =

  

 

'
1

'
2

'

.11 .1

.21 .2

.

 

 

( ) ,  

  

 

kxk

kxk

kxk

Q

i i.12 i k

i i.22 i kQ i

i.k1 i.k2 i kk

   

   
, i 1,2,...,Q

                      

   

 
 
 
 
 
   
   
   
   
   
   
     
 
 
 
 
  





 =



  

  
 = =

  

 

1 1( , ) ( , ) , 1,2 , ; 1,2, , ,i j p P   i p  j P  =  = =  

and  

2 2( , ) ( , ) , 1,2 , ; 1,2, , .i j q Q   i q  j Q  =  = =   

 

Finally, the matrix U(p, P) is the errors’ matrix of dimension (𝑛 − 𝑝 − 𝑃𝑠) × 𝑘 where the ij-th 

element is referred to as 𝜀(𝑝 + 𝑃𝑠 + 𝑖, 𝑗). 

It should be known that the dimension of the regressor matrix X(p,q, P, Q) depends on the model 

orders p, q, P and Q. That is, for each specific set of orders, say p0, q0, P0, and Q0, there is a specific 

matrix X(p0, q0, P0, Q0). One may also notice that the model parameters 1 1( , ) ( , )i j p P    = 
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and 2 2( , ) ( , )i j q Q    =  will be manipulated as free parameters in the proposed Bayesian 

identification methodology in order to have a tractable likelihood function. If n is large enough, 

the approximate likelihood function will express a good approximation to the exact one.  

3. Initial Estimates of the Model Orders 
The seasonal vector autoregressive moving average (SVARMA) having the orders p, q, P, and Q, is 

denoted by SARMA(p,q)(P, Q). It is useful for modeling and forecasting multidimensional time 

series data and usually p, q, P, and Q do not exceed two. In practice, the values of the four orders 

p, q, P, and Q are not known, and we must use the observed n vectors of observations Sn to identify 

them. The formal Bayesian procedure to identify these four values is to derive their joint posterior 

probability mass function. Then we can investigate the probabilities over the range of the four 

orders and select the combination of values of the orders with maximum probability to be the 

values of the orders determined by the proposed technique. The technique employed here is 

slightly different from the pure Bayesian technique. Instead of manipulating the joint posterior 

distribution of p, q, P, and Q, it is suggested to consider the joint posterior density of the 

coefficients matrix Ω0 where 

' ' ' ' ' ' ' ' '
0 1 2 1 1 2 1 10 20( , ) ( , )' '

l 2 m v 2 r                                                l v     m r         =      
 

     

                       (3.1) 

where ,  1,  2, ,  ;i i l = ,  1, 2 , ,  i i m = ; , 1, 2, ,j j v = ; , 1, 2 ,j j r =  are as defined in 

the previous section  and 10 10( , ) ( , )i jl v  =  ; 𝛾20(𝑚, 𝑟) = 𝛾20(𝜃𝑖, 𝛩𝑗) . The maximum orders 

l, m, v and r are assumed to be known. 

Assuming that (0) ( 1) (1 ) 0,m rs  = − = = − − =  the likelihood function of the model 

parameters Ω0 and T can be written as 

( )/2 ( )/2 1
0 2

1

( , | ) (2 ) | | exp( { ( ) }) , (3.2)
n

k n l vs n l vs ,
n

t l vs

L S tr  (t) t                       − − − − −

= + +

    −   

where 

0
,  T  > 0,  g =

kg k
T l l r m rm 


  + + + + +  l, T  > 0, 

, ,
0( ) ( ) ( 1)   (3.3), t y t x t                                                                                           = − −   

and 
𝑥 ,(𝑡 − 1) = [ 𝑦′(𝑡 − 1)    𝑦′(𝑡 − 2) ⋯ 𝑦′(𝑡 − 𝑙)     − 𝜀 ,(𝑡 − 1)    − 𝜀 ,(𝑡 − 2) ⋯  − 𝜀 ,(𝑡 − 𝑚)    

                 𝑦′(𝑡 − 𝑠)     𝑦′(𝑡 − 2𝑠) ⋯  𝑦′(𝑡 − 𝑣𝑠)     − 𝜀 ,(𝑡 − 𝑠)      − 𝜀 ,(𝑡 − 2𝑠) ⋯ − 𝜀 ,(𝑡 − 𝑟𝑠) 

                −𝑦′(𝑡 − 𝑠 − 1)    − 𝑦′(𝑡 − 2𝑠 − 1) ⋯  𝑦′(𝑡 − 𝑣𝑠 − 1)   − 𝑦′(𝑡 − 𝑠 − 2)   − 𝑦′(𝑡 − 2𝑠 − 2) 

               ⋯ − 𝑦′(𝑡 − 𝑣𝑠 − 2) ⋯ − 𝑦′(𝑡 − 𝑠 − 𝑙)     𝑦′(𝑡 − 2𝑠 − 𝑙) ⋯ 𝑦′(𝑡 − 𝑣𝑠 − 𝑙)   𝜀 ,(𝑡 − 𝑠 − 1) 

               𝜀 ,(𝑡 − 2𝑠 − 1) ⋯  𝜀 ,(𝑡 − 𝑟𝑠 − 1)     𝜀 ,(𝑡 − 𝑠 − 2)     𝜀 ,(𝑡 − 2𝑠 − 2) ⋯ 𝜀 ,(𝑡 − 𝑟𝑠 − 2)   

               ⋯  𝜀 ,(𝑡 − 𝑠 − 𝑚)       𝜀 ,(𝑡 − 2𝑠 − 𝑚) ⋯   𝜀 ,(𝑡 − 𝑟𝑠 − 𝑚) ]  

The expression in equation (3.3) is a recurrence relation in terms of the residuals. This recurrence 

causes the main problem in the exact analysis of the seasonal multidimensional moving average 



Bayesian Identification of Seasonal Vector ARMA Processes 

136 

process. However, if one knows Ω0 and the initial values of the residuals, this recurrence formula 

can be used to evaluate the residuals recursively. The suggested approximation depends on 

replacing each exact residual ( )t j −  by its least squares estimate. Moreover, the initial values of 

the residuals are assumed to equal their unconditional means, namely zero. Thus, one estimates 

the residuals recursively by  

, ,
0

ˆˆ ˆ( ) ( ) ( 1),t  y t  x t   = − −   

Where 0̂   are the nonlinear least squares estimates of the coefficients Ω0 and ˆ( 1)x t −  are the same 

as x(t - 1) but using the estimated residuals instead of the exact ones. Using the estimates of the 

residuals, we can write the likelihood function (3.2) approximately as follows; 

( )( )/2 ( )/2 ' '1
0 0 02

1

ˆ ˆ( , | ) (2 ) | | exp( [ ( 1)][ ( 1) ] 3.4
n

k n l vs n l vs
n

t l vs

L S tr  y(t) x t  y(t) x t          − − − − −

= + +

    − −  − −  − 
   

   

An appropriate selection for the prior distribution of the model’s parameters Ω0 and T is a matrix 

Normal–Wishart distribution, i.e. 

    𝜉(Ω0, 𝛵) = 𝜉1(Ω0|𝑇) 𝜉2(𝑡)                                                                                                (3.5) 

where 

𝜉1(Ω0|𝛵) ∝ |𝑇|𝑘𝑔/2 𝑒𝑥𝑝( −
1

2
 𝑡𝑟(Ω0 − 𝐷),𝑉(Ω0 − 𝐷)𝛵 ) 

[ ( 1)]/2 1
2 2

( ) | exp(a k |  tr − +   −  )  

and the hyper-parameters ,
kg k

D  R V


  is a positive definite matrix of dimensions kg×kg, and   

is a positive definite matrix of dimensions k×k. If one has no or little prior information about the 

parameters, one may use Jeffrey’s vague priori   

( 1)/2
0 0( , ) | , ,                                               (3.6)k kg k | R    o                        − +          

Theorem 3.1: combining the approximate likelihood function of the model given in (3.4) with the 

matrix Normal–Wishart prior density given in  (3.5), it is found that, the posterior distribution of 

Ω0 is a matrix t distribution with parameters
1 1 , 1 *ˆ( , , , )A B A C B A B n− − − = − , where  

,

1

ˆ ˆ( 1) ( 1)
n

t l vs

A V x t x t , 
= + +

= + − −  

,

1

ˆ( 1) ( )
n

t l vs

B VD x t y t , 

= + +

= + −  

' ,

1

( ) ( ) and
n

t l vs

C DVD y t y t
= + +

= + +  1n n k a = − + +

 

 
Corollary 3.1: combining the approximate likelihood function (3.4) with Jeffrey’s vague prior 

(3.6), the posterior distribution of Ω0 is a matrix t with parameters
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1 1 , 1ˆ( , , , )A B A C B A B n− − −  = − . However, A, B, C, and n* will be modified by letting 

 0 ( ),    V  kg kg a  kg →  → − and 0( )k k →   

Since Ω0 has a matrix t distribution, any subset of k rows has a matrix t distribution. In addition, 

the conditional distribution of any subset of rows of the matrix Ω0 given any other subset of rows 

is also a matrix t. Furthermore, one can test (marginally or conditionally) any subset of the matrix 

rows to equal zero using an exact F test statistic for k = 1, 2 and using an approximate χ2 test 

statistic for k   3. See Box and Tiao (1973)  for more details on the equations and characteristics 

of the matrix t distribution. 

Instead of manipulating the distribution of the orders p, q, P, and Q, it is suggested to consider the 

posterior distribution of Ω0, given by the previous theorem, and employ a backward elimination 

procedure to specify initial orders p, q, P and Q for the model as follows: 

1. Test H0: Θr = 0 versus Θr ≠ 0 using the marginal posterior matrix t distribution of Θr. 

2. If H0 in the above test is not rejected, test H0: Θr-1 = 0 versus Θr-1 ≠ 0. This test uses the 

conditional distribution of Θr-1 given Θr = 0. It has also a matrix t form. 

3. If H0 in test 2 is not rejected, test H0: Θr-2 = 0 versus Θr-2 ≠ 0. This test uses the conditional 

distribution of Θr-2 given Θr = Θr-1 = 0. This distribution also has a matrix t form. 

4. The above three steps are repeated in the same manner until the hypothesis H0:
0

0r =  is 

rejected for a value r0 where 0 < r0 ≤ r. Then r0 is considered an initial Bayesian estimate of 

the seasonal moving average order r. 

5. The four previous steps are repeated for the seasonal autoregressive order v until the hypothesis 

0
v is rejected for a value v0 where 0 < v0 ≤ v. Then v0 is considered an initial Bayesian 

estimate for the seasonal autoregressive order v. Then the values v0 and r0 are the proposed 

initial Bayesian estimates of the seasonal orders v and r. 

6. The five previous steps are repeated for the non-seasonal (regular) orders l and m until the 

hypotheses 
0

0m =  and 
0

0l =  are rejected for some l0 and m0 where 0 < m0 ≤ m and 0 < 

l0 ≤ l. Then the values l0 and m0 are the proposed initial Bayesian estimates of the non-seasonal 

orders l and m. 

Very often the orders l, m, v, and r do not exceed two. Therefore, we restrict attention here to 

implementing such initial Bayesian technique, described above, to specify the initial orders of 

SARMA(p,q)(P, Q) models assuming l = m = v = r = 2 using Jeffrey’s vague prior. Figure 1 gives 

a binary decision tree for the seasonal part, which displays the 4 paths using which a seasonal 

order is chosen assuming the maximum seasonal orders v = r = 2            
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Figure 1. Decision Tree for Initial Specification of Seasonal Order (P, Q) with v = r = 2 

Note: Y= yes, N= no 

For example, one first tests Θ2 = 0, and if not rejected tests Φ2 = 0 and if not rejected one concludes 

that the appropriate order of the seasonal part is (1, 1). The hypothesis Θ2 = 0 is checked using the 

matrix t marginal distribution of Θ2, but the hypothesis Φ2 = 0 is checked using the conditional 

matrix t distribution of Φ2 given Θ2 = 0. The algorithm starts with the moving average coefficients, 

and then moves to autoregressive coefficients. The algorithm is arbitrary; to begin with the moving 

average part of the model instead of its autoregressive part. 

In a similar fashion, one can specify the initial values of the non-seasonal order (p, q). The initial 

specified values of the non-seasonal and seasonal orders, say p0, q0, P0 and Q0, will be used in our 

suggested formal Bayesian methodology to derive an approximate posterior probability mass 

function for the orders p, q, P, and Q of the model in a simple and tractable form.   

4. Formal Bayesian Identification 

Based on initial values p0, q0, P0 and Q0, estimated above, the basic goal of this section is to 

introduce an approximate formal Bayesian approach for identifying the orders p, q, P and Q of the 

seasonal multidimensional autoregressive moving average models. Unlike the initial technique 

developed in the previous section, the orders p, q, P and Q are regarded as random variables and 

the task is to obtain their joint posterior probability mass function in a simple and tractable form. 

To do that, define Sn 
as the n vectors of observations generated form a seasonal multidimensional 

autoregressive moving average process with orders p, q, P and Q defined in equation (2.1) such 

that p, q, P and Q are positive unknown integers. To get the likelihood function of the parameters 

Ω(p,q,P,Q), p, q, P, Q and T, we Condition on the first (p+Ps) observed vectors, then 

( )/2( )/2 '1
2

1

( ( , ), , , , | ) (2 )  exp ( ) ( )   
n

n p Psk n p Ps
n

t p Ps

L p q,P,Q p q,P Q T S T tr t t T  
− −− − −

= + +

 
   −
 
 



(4.1) 

where 
( )( , , , ) ;k p q P Q pP qQ kp q P Q R + + + + +    T > 0;  

* *1,  2,...,  ;   1,  2,...,  ;p p q q= =

* *1,  2,...,  ;   1,  2,...,  P P Q Q= =  and (p*, q*, P*, Q*) are the largest possible orders of the model. 

From equation (2.2), the vectors ( )t  of the residuals can be written as 

                                  Y         (P=1, Q=1)            

              H0: Φ2= 0                                                     

                  Y                  N         (P=2, Q=1)         

              H0: Θ2=0              

       N                  Y           (P=1, Q=2)  

              H0: Φ2= 0                                                                                 

                            N           (P=2, Q=2)    
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'
, , ,'( ) '( ) ( 1) ( , , , ),   1,2, , ,p q P Qt y t x t p q P Q t n = − −  =                                                     (4.2) 

such that '
, , , ( 1)p q P Qx t −   is the row number t in the regressor’s matrix X(p,q,P,Q) having the form 

𝑥𝑝,𝑞,𝑃,𝑄
′ (𝑡 − 1) = [ 𝑦′(𝑡 − 1)    𝑦′(𝑡 − 2) ⋯  𝑦′(𝑡 − 𝑝)     − 𝜀 ,(𝑡 − 1)    −  𝜀 ,(𝑡 − 2) ⋯  − 𝜀 ,(𝑡 − 𝑞)    

                         𝑦′(𝑡 − 𝑠)     𝑦′(𝑡 − 2𝑠) ⋯ 𝑦′(𝑡 − 𝑃𝑠)     − 𝜀 ,(𝑡 − 𝑠)      − 𝜀 ,(𝑡 − 2𝑠) ⋯ − 𝜀 ,(𝑡 − 𝑄𝑠)  

                       −𝑦′(𝑡 − 𝑠 − 1)  − 𝑦′(𝑡 − 2𝑠 − 1) ⋯  𝑦′(𝑡 − 𝑃𝑠 − 1)   − 𝑦′(𝑡 − 𝑠 − 2)   − 𝑦′(𝑡 − 2𝑠

− 2)  

                       ⋯  − 𝑦′(𝑡 − 𝑃𝑠 − 2) ⋯ − 𝑦′(𝑡 − 𝑠 − 𝑝)     𝑦′(𝑡 − 2𝑠 − 𝑝) ⋯   𝑦′(𝑡 − 𝑃𝑠 − 𝑝)  

                       𝜀 ,(𝑡 − 𝑠 − 1)   𝜀 ,(𝑡 − 2𝑠 − 1) ⋯  𝜀 ,(𝑡 − 𝑄𝑠 − 1)     𝜀 ,(𝑡 − 𝑠 − 2)    𝜀 ,(𝑡 − 2𝑠 − 2) ⋯ 

                       𝜀 ,(𝑡 − 𝑄𝑠 − 2) ⋯  𝜀 ,(𝑡 − 𝑠 − 𝑞)       𝜀 ,(𝑡 − 2𝑠 − 𝑚) ⋯   𝜀 ,(𝑡 − 𝑄𝑠 − 𝑞) ]  

    

Substituting from (4.2) to equation (4.1), the conditional likelihood function is given by 

( )/2

' ' '1
, , , , , ,2

1

( ) / 2
( ( , , , ), , , , , | ) (2 )

exp [ ( ) ( , , , ) ( 1)][ ( ) ( , , , ) ( 1)]  

(4.3)

                                                  

k n p Ps
n

n

p q P Q p q P Q
t p Ps

n p Ps
L p q P Q p q P Q T S T

tr y t p q P Q x t y t p q P Q x t T

 − − −

= + +

− −
 

 
 − −  − −  −
 
 



                                                                                  

  

The likelihood function (4.3) is a complicated function because the errors ( ) 't j s −  are non-linear 

function in the coefficients of the model 
i , θi, Φi and Θi. To simplify the form (4.3), we suggest 

using the initial values p0, q0, P0, and Q0 to find estimates for the residuals ( ) 't j s −  using the 

following recurrence formula. 

( ), , ,
ˆˆ ˆ( ) 1 ,p q P Q t  y (t)  x t = −  −  

where ̂ the non-linear least square estimate of the matrix coefficients Ω and , , ,
ˆ ( 1)p q P Qx t −  is the 

same as , , , ( 1)p q P Qx t −  replacing the exact residuals by the estimated ones ˆ( )’t j s − . Then, the 

estimated residuals ˆ( )’t j s − are substituted in the likelihood function (4.3) to get an approximate 

likelihood function on the form  

( )/2( )/2

' ' '1
, , , , , ,2

1

( ( , , , ), , , , , | ) (2 )

ˆ ˆexp [ ( ) ( , , , ) ( 1)][ ( ) ( , , , ) ( 1)]   (4.4) 

                                             

n p Psk n p Ps
n

n

p q P Q p q P Q
t p Ps

L p q P Q p q P Q T S T

tr y t p q P Q x t y t p q P Q x t T


− − − − −

= + +

 

 
 − −  − −  −
 
 



                                                                                       

 

An appropriate selection of the conditional prior density for Ω(p,q,P,Q) given p, q, P, Q and T is 

2( , , , ) /2 /2 ( , , , )/2
( ( , , , ) | , , , , ) (2 ) | ( , , , ) | | |1

'
[ ( , , , ) ( , , , ) ] ( , , , )[ ( , , , ) ( , , , ) ] ),

h p q P Q k k kh p q P Q
p q P Q p q P Q R p q P Q

1  p q P Q D p q P Q  R p q P Q p q P Q D p q P Q   
2

 

exp( tr

 −
  

 −  − 

=

−
                          (4.5) 
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where the hyper-parameters 
( , , , )( , , , ) h p q P Q kxkD p q P Q R   and R(p,q,P, Q) is a positive definite 

matrix of orders ( ) ( ), , , , , ,kh p q P Q kh p q P Q   . The precision matrix T is assumed to have, a 

Wishart prior distribution in the form. 

( 1)
1

22 2
( ) exp( ),

a k

T tr   
− +

  −                                                                                            (4.6) 

where Ψ is a positive definite matrix of orders k k .                      

Suppose ijmr  is the prior probability that the four orders of the seasonal multivariate 

autoregressive moving average process which generated the time series realization Sn are  i, j, m 

and r; i.e. 

[ , , ] , ; ;
i rjmr

P  p i q  j ,P m  Q  r  i 1 ,2,... , p  j  1 ,2 , ... , q m 1,2,...,P r 1,2,...,Q     ; 
   

= = = = = = = ==            (4.7) 

The four maximum orders of the process p*, q*, P*, Q* are assumed to be known. Regarding 

equations (4.5), (4.6) and (4.7), the joint prior distribution of the models’ parameters Ω(p,q,P,Q), 

p, q, P, Q
 
and T is  

2 1
2

1
2

/2 /2
| |

'
(

( ( , , , ), , , , , ) (2 ) ( , , ,

{[ , , , , ] ( , , , ) [ , , , , ] } )exp

| ) |
kh a khk k

ijmrp q P Q p q P Q   R p q P Q

tr   (p q,P Q) D(p q,P Q) R p q P Q   (p q,P Q) D(p q,P Q)   

f  
+ − −−  

−  −  − +  


   

(4.8) 

If one is not quite confident about the hyper-parameters D(p, q, P,Q), R(p, q, P,Q),  and Ψ, one 

might use Jeffreys’ vague prior 

(( (p, ,  P, ), p, ,  P, , )  k 1)/ 2q Q q Q      | |   − +                                                                              (4.9) 

Combining the approximate likelihood (4.4), according to Bayes’ theorem, with the prior 

distribution in (4.8), then, the joint posterior distribution of the model’s parameters Ω(p,q,P,Q), p, 

q, P, Q and T will be 

2( )
2 /2 ( , , , )/2

'1
2

' '
, , ,

( ( , , , ), , , , , | ) (2 ) | ( , , , ) | | |

exp( {[ , , , , ] ( , , , ) [ , , , , ]

[ ( ) ( , , , ) ( 1)][ ( ) ( , , ,

k p Ps hk
k p q P Q

n ijmr

p q P Q

g p q P Q p q P Q  S R p q P Q

tr   (p q,P Q) D(p q,P Q) R p q P Q   (p q,P Q) D(p q,P Q) 

y t p q P Q x t y t p q P

 
+ −

   

−  −  − + 

+ −  − −  '
, , ,

1

ˆ) ( 1)] } ),
n

p q P Q
t p Ps

Q x t T  

= + +

− 

  

(4.10) 

where ( , , , ) , , , 1p q P Q   n p Ps kh (p q P   Q ) a k = − − + + − −  

Theorem 4.1: based on the approximate likelihood function (4.4) and the joint prior density (4.8), 

the joint posterior probability mass function of the orders p, q, P and Q
 
is 
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1
2

( )/2 /2 /2

[ ]

1

( , , , | ) ( ) | ( , , , ) | ( , , , ) |

                 | ( , , , ) | ( ) 1
2

k p Ps k k
n ijmr

k
n p Ps a

j

h p q P Q  S R p q P Q A p q P Q

n p Ps a k j
C p q P Q    ,n  k p Ps a

  + −

− − − +

=



− − + − +
   + + − −  

,

, , , , , ,

1

ˆ ˆ( , , , ) ( , , , ) ( 1) ( 1)
n

p q P Q p q P Q

t p Ps

A p q P Q R p q P Q x t x t  ,
= + +

= + − − where 

 

 

and 

( ) ' ' '

1

' 1

, , , , , ( , , , ) ( , , , ) ( ) ( )

( , , , ) ( , , , ) ( , , , )

n

t p Ps

 C p q P Q D (p q,P Q) R p q P Q D p q P Q y t y t

 B p q P Q A p q P Q B p q P Q

= + +

−

= +  +

−


 

Theorem (4.1) can be proved by integrating (4.10) with respect to the parameters Ω and T, 

respectively. The integral with respect to Ω is done by completing the squares of the exponent 

(4.10) and then applying the matrix normal integral, see Box and Tiao (1973). The integral 

concerning the parameter T is done using Wishart density.  

Corollary (4.1): Using the approximate likelihood (4.4) and the Jeffreys’ vague prior (4.9), the 

joint posterior probability mass function of the orders p, q, P and Q
 
is  

2 1
2/2 /2 [ ]

1

1

( , , , | ) ( ) | ( , , , ) | | ( , , , ) |

( ) 1,
2

hk k n hk
n

k

j

h p q P Q  S A p q P Q C p q P Q  

n hk k j
   ,n  k hk

  −  − −

=



− − +
   + −  

where 

,
, , , , , ,

1

ˆ ˆ( , , , ) ( 1) ( 1)
n

p q P Q p q P Q
t p Ps

A p q P Q x t x t       ,

= + +

= − −  

,
, , ,

1

ˆ( , , , ) ( 1) ( ) ,
n

p q P Q
t p Ps

B p q P Q x t y t    

= + +

= −  

( ) , ' 1

1

, , , ( ) ( ) ( , , , ) ( , ,. , ) ( , , , ) .
n

t p Ps

C p q P Q y t y t  B p q P Q A p q P Q  B p q P Q      − 

= + +

= −     

Note that the form of the joint posterior probability mass function of the model orders is easy to 

handle with the software packages. Then one may calculate and inspect all posterior probabilities 

over the range of the orders and select the values p, q, P and Q
 
where the posterior probability 

mass function reaches its highest value to be the most appropriate orders for the analyzed 

multivariate time series data. 
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5. A Numerical Study 
We devote this section to assessing the numerical effectiveness of the proposed Bayesian 

algorithm, via conducting two Monte Carlo simulation studies, in identifying the orders of the 

bivariate SVARMA (1,1) (1,1)4 model. The effectiveness criterion of the proposed algorithm is 

taken to be the relative frequency of the replicates which succeeds in identifying the true order 

(1,1) (1,1). Our main goal is to test such effectiveness concerning different time series lengths, and 

different coefficients’ matrices as well as different prior selections. Regarding the variance-

covariance matrix of the disturbance term, abbreviated by Σ, and the maximum order of the  

simulated model, they are fixed at 
2 1

1 1

     
 

     

 
 
 

and (2,2)(2,2) respectively throughout the whole 

simulation process. All computations are performed on Pc using SCA package.  

Consider simulation 1, as an example, it starts by generating 500 data sets of pairs of observations 

from bivariate normal random variables, each of size 3000, to represent the random errors ε(t). 

These 500 data sets are then used to generate 500 realizations of pairs of observation, each of size 

2000, from bivariate SVARMA(1,1)(1,1)4 model with coefficient matrices 1

0.4   0.4
,

0.4   0.4

     
 

     


 
=  

 

1

0.4   0.4
,

0.4  0.4

    
 

     
=

 
 
 

1

0.5 0.4
,

0.3 0.2

     
 

     


−
=

−

 
 
 

and 1

0.4 0 4
.

0.3 0.2

     .
 

     

−
 =

−

 
 
 

The first 1000 generated observations 

are ignored to remove the initialization effect. For each prior function, the second step of 

simulation 1 is to employ all computations, assuming the maximum values of the orders are 

(2,2)(2,2), required to specify a model for each of the 500 realizations and to find the percentage 

of the correct specification. The computations are employed for a certain time series length n using 

the first n observations of each generated realization. The second step is repeated for each selected 

time series length and each prior combination. The selected lengths of the time series are taken to 

be 200, 400, 600, 800, 1500, and 2000. Regarding the prior probability mass function of the orders 

p, q, P and Q, which is combined with Jeffrey’s vague prior of Ω(p,q,P, Q) and T, the following 

three prior distributions are employed: 

Prior 1:  
1

( , , , ) ;  ;  ;  1,2 ;  1,2
16

  p q P Q     p    1 ,2   q  1 ,2 P Q = = = = =

Prior 2: ( , , , ) (0.5) ; 1 ; 1  ;  1,2 ;  1,2p q P Q p q P Q     p     ,2    q   ,2  P Q + + + = = = =  

:Prior 3 (1,1,1,1) 0.0928,  (1,2,1,1) (2,1,1,1) (1,1,1,2) (1,1,2,1)

0.07765,  (1,2,1,2) (1,2,2,1) (2,1,1,2) (2,1,2,1) (1,1.2,2)

(2,2,1,1) 0.0625,  1,2,2,2 (2,1,2,2) (2,2,1,2) (2,2,2,1)

  

  ( )

    

    

    

= = = =

= = = = =

= = = = =

0.04735 ,  (2,2,2,2) 0.0322         = =

 

The first prior function gives equal probabilities to each combination of orders. The second prior 

function assigns probabilities that decrease exponentially as the orders increase, while the third 

prior is selected to give probabilities that decrease by an absolute value 0.01515 when the order 
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increases. Simulation 2 is conducted similarly with 1

0.6   0.4
,

0.5 1.11

     
 

    
 =

−

 
 
 

1

0.6     0.4
,

0.5 1.11

   
 

     
=

−


 
 
 

1

0.5 0.4
,

0.3 0.2

     

     


−
=

−

 
 
 

 and 1

0.5 0 4

0.3 0.2

     .

     

−
 =

−

 
 
 

.  

Table 1 presents the results of simulations 1 and 2. The coefficients in these simulations were 

selected to satisfy the stationarity and invertibility conditions of the models, see Harvey (1981). 

Furthermore, percentages of correct specifications using the well-known AIC are also reported in 

the same table. 

 

Table 1. Percentages of Correct Identification of the AIC and the Bayesian Techniques for bivariate 

SVARMA(1,1)(1,1)4 Processes 

PARAMETERS n PRIOR1

 

PRIOR2

 

PRIOR3

 

AIC 

1 1

0.4 0.4 0.4 0.4
 ,  

0.4 0.4 0.4 0.4


   
   
   

=  =  

 

1 1
0.5 0.4 0.5 0.4

 ,  
0.3 0.2 0.3 0.2


   
   
   

− −
=  =

− −
 

200 

400 

600 

800 

1500 

2000 

1.6 

12.6 

26.6 

38.0 

55.0 

65.0 

73.6 

85.0 

91.0 

92.6 

95.4 

97.0 

53.4 

66.6 

77.0 

81.4 

88.2 

90.4 

57.0 

63.2 

64.2 

65.8 

63.6 

64.0 

1 1

0.6 0.4 0.6 0.4
 ,  

0.5 1.11 0.5 1.11


   
   
   

=  =
− −

 

 

1 1

0.5 0.4 0.5 0.4
 ,  

0.3 0.2 0.3 0.2


   
   
   

− −
=  =

− −
 

200 

400 

600 

800 

1500 

2000 

32.8 

47.8 

50.4 

52.0 

48.4 

53.2 

81.2 

89.4 

92.2 

95.0 

96.8 

96.6 

64.8 

75.6 

79.0 

82.0 

85.2 

86.8 

57.8 

62.2 

63.4 

62.8 

66.6 

65.8 

 

Inspection of the numerical results shows that the percentage of correct identification increases as 

the time series length n increases for the two models and all priors. For the uniform prior (prior 1), 

the percentages of correct identification are reasonable, being greater than 48 %, for time series 

length 1500 or longer regardless of the values of the coefficients. Moreover, the percentage of 

correct identification achieved by the second and third priors is very high, being greater than 81%, 

for a sample size of 800 or more for the two models. Moreover, the percentages of correct 

specification obtained by the technique using the second prior is higher than that obtained using 

prior 3, which in turn is better than that obtained using prior 1. For the matter of comparison, the 

percentages of correct identification obtained using the AIC procedure are greater than those 

obtained by using prior 1 for a short time series length; however, the results get closer to each other 

when the sample size increases. For the other two priors and a sample size greater than 200, the 

percentages of correct specification achieved by the proposed procedure are much higher than that 

achieved by the AIC no matter what the coefficients are. Considering the previous comments, we 
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might conclude that the simulation results support the goodness of using the proposed Bayesian 

approach to identify orders for seasonal vector autoregressive moving average processes for 

moderate as well as long time series. 

 

Declaration of interests: 

The authors declare that they have no conflict of interest. 

 

References 

Akaike, H. (1974). A New Look at Statistical Model Identification. IEEE Transaction on 

Automatic Control, 19: 3716–3723. 

Athanasopoulos, G. and Vahid, F. (2008). VARMA versus VAR for macroeconomic forecasting. 

Journal of Business and Economic Statistics, 26(2): 237–252. 

Box, G.E.P., Jenkins, G.M, Reinsel, G.C. and Ljung, G.M. (2016).Time Series Analysis: 

Forecasting and Control. Fifth Edition, John Wiley & Sons. 

Beveridge, S. and Oickle, C. (1994). A Comparison of Box–Jenkins and objective methods for 

determining the order of a non-seasonal ARMA model. Journal of Forecasting, 13: 419–

434. doi.org/10.1002/for.3980130502 

Box, G. E. P., Tiao, G. C. (1973). Bayesian Inference in Statistical Analysis. Reading, MA: 

Addison Wesley. 

Broemeling, L., Shaarawy, S. (1988). Time series: A Bayesian Analysis in Time Domain: Bayesian 

Analysis of Time Series and Dynamic Models. Studies in Bayesian Analysis of Time Series 

and Dynamic Models, Edited by J. Spall, Marcel Dekker Inc., New York: 1–22. 

Brockwell, P. J. and Davis, R. A. (2016). Introduction to Time Series and Forecasting. Third 

edition. Springer International Publishing. 

Chatfield, C. (2019). The Analysis of Time Series: Theory and Practice. An Introduction with R. 

Seventh Edition. Chapman & Hall. 

Cooley, T. F. and Dwyer, M. (1998). Business cycle analysis without much theory: a look at 

structural VARs. Journal of Econometrics, 83: 57–88. doi.org/10.1016/S0304-

4076(97)00065-1 

Hagnell, M. (1991). A Multivariate time series analysis of fertility, adult mortality, nuptiality and 

real wages in Sweden 1751 – 1850: A comparison of two different approaches. Journal of 

Official Statistics, 7(4): 437-455. 

Hannan, E. J. and B. G. Quinn (1979). The determination of the order of an autoregression. Journal 

of the Royal Statistical Society, Ser. B, 41: 190-195. 

Harvey. A., C. (1993). Time Series Models. Second Edition. The MIT Press. 

Kascha, C. (2012). A comparison of estimation methods for vector autoregressive moving-average 

models. Econometric Reviews, 31: 297–324. doi: 10.1080/07474938.2011.607343 

Liu, L. M. (2009). Time Series Analysis and Forecasting. Second Edition, Villa Park, IL: Scientific 

Computing Associates. 

Lütkepohl. (2007). New Introduction to Multiple Time Series Analysis. Springer-Verlag Berlin 

Heidelberg Springer Publishing Company, Incorporated. 

Monahan, J. F. (1983). Fully Bayesian analysis of ARIMA Time Series Models. Journal of 

Econometrics, 21: 307–331. doi.org/10.1016/0304-4076(83)90048-9 

Priestley, M. (1981). Spectral Analysis of Time Series. London: Academic Press. 

Quenouille (1957). The analysis of multiple time series. Journal of Mathematical Sciences and 

Applications, 5 (1): 1-16. 

Raghavan, M. Athanasopoulos, G. and Silvapulle, P. (2009). VARMA models for Malaysian 

Monetary Policy Analysis. Monash Econometrics and Business Statistics Working Papers. 

https://doi.org/10.1002/for.3980130502
https://doi.org/10.1016/S0304-4076(97)00065-1
https://doi.org/10.1016/S0304-4076(97)00065-1
https://doi.org/10.1016/0304-4076(83)90048-9


The Egyptian Statistical Journal (ESJ), 68(2): 129-145 

   
145 

Reinsel, G. C. (1997). Elements of Multivariate Time Series. Springer Series in Statistics, Second 

Edition. Springer Verlag, New York. 

Rissanen, J. (1978). Modeling by shortest data description. Automatica, 14: 465-471. 

Schwarz, G. (1978). Estimating the dimension of a model. Annals of Statistics, 6: 461-464. 

Shaarawy, S.M. and Ali, S.S. (2003). Bayesian identification of seasonal autoregressive models. 

Communications in Statistics-Theory and Methods, 32: 1067–1084. 

Shaarawy, S.M., Soliman, E.E.A. and Ali, S.S. (2007). Bayesian identification of moving average 

models. Communications in Statistics-Theory and Method, 36(12), 2301-2312. 

Shaarawy, S.M. and Ali, S.S. (2008). Bayesian identification of vector autoregressive processes. 

Communications in Statistics-Theory and Methods, 37: 791–802. 

Shaarawy, S. M, and Ali, S. S. (2015). Bayesian identification of seasonal vector autoregressive. 

Communications in Statistics-Theory and Methods, 44: 823-838. 

Shaarawy, S.M., (2021). Bayesian modeling and forecasting of vector autoregressive moving 

average processes. Communications in Statistics-Theory and Methods. 

doi.org/10.1080/03610926. 

Tiao, G. C., Box, G. E. P. (1981). Modeling multiple time series with applications. Journal of the 

American Statistical Association, 76: 802–816. doi.org/10.2307/2287575 

Tiao, G. C. and R. S. Tsay (1983). Multiple time series modeling and extended sample cross-

correlation, Journal of Business Economics and Statistics, 1: 43-56. 

doi.org/10.2307/1391772 

Tsay, R. (1984). Order selection in non-stationary autoregressive models. Annals of the Institute of 

Statistical Mathematics, 12: 1425-1433. 

Tsay, R. S. (1989). Parsimonious parameterization of vector autoregressive moving average 

models. Journal of Business Economics and Statistics, 7: 327-341. 

doi.org/10.2307/1391530 

Tsay, R. S.  (2014). Multivariate Time Series Analysis: With R and Financial Applications. John 

Wiley and Sons. 

Wei, W. W. S. (2005). Time Series Analysis: Univariate and Multivariate Methods. Second edition, 

Reading, MA: Addison Wesley. 

Wei. W. W. S. (2019). Multivariate Time Series Analysis and Applications. John Wiley & Sons. 

 


