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 This paper explores the efficacy of incorporating tail dependence into copula-based 

regression models applied to mixed health insurance data. Recognizing the limitations 

of traditional Generalized Linear Models (GLMs) in capturing the nuanced 

relationships within mixed data types, we extend the GLM framework to include 

bivariate and multivariate structures with gamma and negative binomial distributions. 

We apply a comprehensive suite of copula families—Gaussian, Clayton, Gumbel, 

Frank, and Student's-t to model the dependencies between variables, focusing on 

capturing tail dependence, a critical aspect in the context of insurance claim sizes and 

frequencies. Our methodology involves fitting bivariate GLMs for each pair of 

variables to understand pairwise dependencies and then extending the analysis to 

multivariate GLMs to capture the complex interplay between multiple predictors and 

the response variable. The analysis is performed on a rich dataset of health insurance 

claims, to identify the copula family that best represents the dependence structure. The 

results demonstrate that copulas with heavier tails, such as the Gumbel and Student's t 

copulas, provide superior fit and predictive performance for extreme claim amounts, 

outperforming those with lighter tails, such as the Gaussian and Frank copulas. The 

Clayton copula also shows promise in modeling lower tail dependence. Our findings 

suggest that tail dependence is a significant factor in accurately modeling health 

insurance claims data, and that the choice of copula family has a profound impact on 

the model's effectiveness. We conclude that copula-based regression models, with a 

focus on tail dependence, offer a robust alternative to conventional regression 

techniques, enabling actuaries and data analysts in health insurance to better understand 

risk and price policies more accurately. Our research contributes to the actuarial field 

by providing a systematic comparison of copula families in the context of health 

insurance data and by underscoring the importance of tail dependence in actuarial 

modeling 

 

1. Introduction 
Health insurance companies are increasingly confronted with heterogeneous data sets, comprising 

various risk factors that include both typical and extreme values. Traditional regression models, 

while useful, often fall short in accurately capturing the complex dependencies between these 

mixed types of data-especially in the tails of the distribution where the most significant insurance 

claims reside. This inadequacy has driven the development and application of more sophisticated 

models, such as tail-dependence copula-based regression models, to accurately assess and predict 

insurance risk. 

mailto:felshinawy@gmail.com
https://orcid.org/0000-0002-7765-1616


Using Tail Dependence on Copula-based Regression 

66 

The present paper seeks to contribute to the existing body of knowledge by applying a tail-

dependence copula-based regression model to mixed health insurance data. The objective is to 

enhance the understanding of the dependency structure between different types of variables—

particularly focusing on the tail dependence that can lead to significant financial impacts due to 

the occurrence of high-cost claims. 

This paper will provide a comprehensive review of the theoretical underpinnings of copula-based 

regression models, detail the methodology of applying these models to health insurance data, and 

present a novel empirical analysis. The study aims to offer insights that can aid insurers in risk 

assessment and policy design, ultimately leading to more robust and financially sustainable health 

insurance products. 

The analysis of mixed data, comprising continuous and discrete variables, is a ubiquitous challenge 

in statistical modeling. Traditional regression models often prove inadequate in capturing the 

intricate dependence structures within such datasets, particularly in the tails of the distribution. 

This limitation is particularly acute in sectors like health insurance, where the occurrence of 

extreme events—though rare—can significantly impact the system. 

The present paper aims to delve into the use of tail-dependence copula-based regression models to 

better understand and model the dependencies in mixed data, with a particular focus on 

applications within health insurance data. This approach is poised to offer a more nuanced 

understanding of the interactions between different types of variables, especially in the context of 

extreme values. 

2. Literature Review 
In the realm of statistical analysis, mixed data types pose a substantial challenge in modeling the 

relationships between variables (Kolev and Paiva, 2009), particularly when considering the joint 

distribution of such variables. The application of copula-based models has gained traction as a 

robust means to address this challenge, especially in fields where tail dependence is a critical 

concern, such as finance and insurance. 

A copula is a mathematical function that allows for the modeling of complex dependencies 

between random variables with different marginal distributions (Nelsen, 2006). The seminal work 

by Sklar, 1959 introduced the copula function, fundamentally changing the approach to 

multivariate distribution modeling by allowing for the separation of marginal distributions from 

their dependence structure. 

The importance of capturing tail dependence through copulas in mixed data scenarios is well-

documented in the literature. Tail dependence refers to the probability of extreme values in one 

variable occurring simultaneously with extreme values in another variable. This concept is 

particularly relevant in risk management (McNeil et al.,2015) and (Anderson, 2012) where the 

underestimation of joint extreme events can lead to significant financial implications (Embrechts, 

McNeil, and Straumann, 2002). 

In the context of mixed data, copulas have been utilized to model the dependence structure between 

continuous and discrete variables. Genest and Favre, 2007 explored the use of copulas to 

understand the relationships between mixed variables, highlighting the flexibility of copulas in 

accommodating different types of data. The work by Patton, 2012 further advanced the application 
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of copulas in econometrics, providing robust methods for modeling and inference for copula-based 

models in mixed-data environments. 

Recent advancements in copula research have focused on the use of vine copulas, which provide 

a method for constructing high-dimensional copulas from bivariate copulas, allowing for greater 

flexibility in modeling complex dependencies (Aas et al., 2009). Joe (2014) provided 

comprehensive insights into the theory and applications of copulas in multivariate problems, 

including those involving mixed data. 

The literature indicates a growing consensus on the efficacy of tail-dependence copula-based 

models in capturing the complex interactions within mixed data sets and providing a more accurate 

understanding of the underlying risk structure. 

The complexity of health insurance data, with its mix of continuous, discrete, and categorical 

variables, has necessitated the development of sophisticated statistical methods to understand and 

predict the relationships within the data. A growing body of literature has focused on the 

integration of copula-based models to tackle these challenges, particularly emphasizing the 

importance of capturing tail dependencies. 

Initially, copula models were employed in finance to model the dependency structure between 

assets, but they have since been adapted for use in insurance data (Embrechts, McNeil, and 

Straumann, 2002). Sklar,1959 laid the theoretical groundwork for using copulas to model 

multivariate distributions, allowing for the separation of marginal distributions from their 

dependency structure (Genest et al., 2007). This separation is particularly useful in mixed data 

types found in health insurance contexts (Joe, 2015). 

Tail dependence, the tendency for extreme outcomes to occur simultaneously across variables, is 

a critical aspect of health insurance risk modeling. Studies by (Embrechts, Lindskog, and McNeil, 

2003) highlighted the applicability of copulas in capturing such extremal dependencies. This is 

critical in health insurance, where the joint occurrence of large claims can have substantial 

financial implications. 

Recent research has applied these models to health insurance claims data to better understand and 

predict the occurrence of large, infrequent claims. Zhang and Dukic, 2013 used copula models to 

investigate the dependencies between different types of health insurance claims, while Czado and 

Nagler, 2022 extended this work by employing vine copulas to capture the complex interactions 

within mixed data more effectively. 

In terms of tail dependence, studies like those by Levantesi and Menzietti, 2017 have explored the 

use of copulas in long-term care insurance, where the occurrence of extreme events is of particular 

concern. Such models are crucial in predicting the longevity risk and pricing long-term care 

insurance products. 

In summary, the literature indicates that tail-dependence copula-based regression models are an 

essential tool for understanding and managing the risks associated with health insurance data. 

Copula-based regression models have garnered increasing attention in the statistical and machine-

learning communities for their ability to capture complex dependencies between variables. Unlike 

traditional regression models that often assume independence or simple linear relationships among 
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variables, copulas allow for a flexible representation of the dependence structure, accommodating 

tail dependencies and asymmetries often present in real-world data (Nelsen, 2006). This is 

particularly useful when dealing with mixed data types—comprising continuous, discrete, and 

categorical variables—where capturing the intricate relationships between variables is critical for 

accurate modeling and prediction (Genest and Favre, 2007). 

In fields such as finance (Rodriguez, 2007), insurance, and environmental studies, where mixed 

data types are prevalent, the use of copula-based regression models can lead to more robust risk 

assessments and better-informed decision-making processes (Embrechts, McNeil, and Straumann, 

2002). For instance, in health insurance, copula models can be employed to understand the 

relationship between patient demographics, past medical history, and the cost of insurance claims, 

thus enabling better risk pricing and policy design (Frees and Valdez, 1998). 

The versatility of copulas stems from Sklar's theorem, which states that any multivariate joint 

distribution can be expressed as a copula function that connects the marginal distributions of 

individual variables (Sklar, 1959). This property is particularly advantageous for mixed data 

modeling, as it allows for separate modeling of the marginal distributions appropriate for each type 

of data, followed using a copula to model their dependence structure (Joe, 1997). 

The current landscape of copula-based regression models for mixed data is rich, with various 

approaches tailored to different types of mixed data. For instance, vine copulas offer a flexible 

framework for high-dimensional mixed data modeling, decomposing a multivariate copula into a 

sequence of bivariate copulas, thus simplifying estimation and interpretation (Aas et al., 2009). 

Another approach involves the use of factor copulas, where latent factors are introduced to capture 

the underlying dependence among variables (Krupskii and Joe, 2015). 

Despite their advantages, copula-based regression models are not without challenges. The 

selection of an appropriate copula function, estimation of copula parameters, and the handling of 

high-dimensional data remain active areas of research (Kurowicka and Joe, 2011).  

In conclusion, copula-based regression models offer a powerful and flexible approach for 

analyzing and interpreting mixed data. As data complexity grows and the need for sophisticated 

modeling techniques becomes more pressing, copulas are likely to play an increasingly central role 

in statistical analysis and predictive modeling across various disciplines. 

3. Methodology 
In this study, we adopt copula-based regression models to analyze mixed health insurance data. 

We begin by specifying the appropriate marginal distributions for our data followed by the 

construction of joint distributions using copulas. The methodology emphasizes the use of copulas 

to capture the dependence structure between variables, particularly focusing on tail dependence 

characteristics. 

 

3-1 Marginal Model Specification 

For the continuous response variable representing health insurance charges, which is a continuous 

positive variable, a common choice for the marginal distribution of the response variable is the 

Gamma distribution due to its flexibility in modeling skewed positive data as: 

𝑓𝑌(𝑦; 𝛼, 𝛽) =
𝛽𝛼𝑦𝛼−1𝑒−𝛽𝑦

𝛤(𝛼)
 , 𝑦 > 0, 𝛼 > 0, 𝛽 > 0                                                    (1) 
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Where 𝑦 is the charge size of claims per month, 𝛼 is the shape parameter, 𝛽 is the rate parameter, 

and 𝛤(𝛼)is the gamma function evaluated at 𝛼 

Also, For count variables such as the number of children, we specify the Negative Binomial 

distribution: 

𝑃(𝑌 = 𝑦; 𝑟, 𝑝) = (
𝑦 + 𝑟 − 1

𝑦
) 𝑝𝑟(1 − 𝑝)𝑦, 𝑦 = 0,1,2, …                                                (2) 

Where y is the children's number, 𝑟 is the number of failures until the experiment is stopped, and 

𝑝 is the probability of success in a single trial. 

For binary explanatory variables like sex (male/female) and smoking (yes/no), we incorporate 

them into the model using a logistic regression framework. 

 

3-2 Copula Types and Their Properties  

3-2-1 Gaussian Copula 

The Gaussian copula is derived from the multivariate normal distribution, capturing linear 

dependencies between variables. The strength and direction of the dependencies are measured by 

the correlation matrix, which does not capture tail dependence (Nelsen, 2006). The Gaussian 

copula is defined by its correlation matrix 𝑝 and is given by: 

                              𝐶𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛(𝑢1, 𝑢2; 𝜌 ) = 𝛷𝜌(𝛷−1(𝑢1), 𝛷−1(𝑢2))                                       (3) 

Where 𝛷𝜌is the cumulative distribution function (CDF) of the bivariate normal distribution with 

correlation coefficient 𝜌, and 𝛷−1 is the quantile function of the standard normal distribution. 

 

3-2-2 Clayton Copula 

The Clayton copula is known for its ability to model lower tail dependence, meaning it can 

effectively capture the scenario where extremely low values occur simultaneously across variables. 

It features an asymmetry that makes it suitable for modeling data where such joint extreme values 

are more likely on the lower end (Hofert and Scherer, 2011). 

The Clayton copula is defined by its parameter 𝜃 > 0 

                            𝐶𝐶𝑙𝑎𝑦𝑡𝑜𝑛(𝑢1, 𝑢2; 𝜃 ) = max {(𝑢1
−𝜃 + 𝑢2

−𝜃 − 1)−1/𝜃, 0}                               (4) 

The Clayton copula has lower tail dependence and is asymmetric. 

3-2-3 Gumbel Copula 

Conversely, the Gumbel copula is adept at modeling upper tail dependence, which is pertinent for 

insurance data where the primary concern is the co-occurrence of large claims. It is asymmetric 

and places more weight on the joint tails of the distribution (Nelsen, 2006). 

The Gumbel copula is defined by its parameter θ≥1 and is given by: 

                         𝐶𝐺𝑢𝑚𝑏𝑒𝑙(𝑢1, 𝑢2; 𝜃 ) = exp {−[(−𝑙𝑜𝑔𝑢1)𝜃 + (−𝑙𝑜𝑔𝑢2)𝜃]
1

𝜃}                         (5) 

The Gumbel copula exhibits upper tail dependence. 
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3-2-4 Frank Copula 

The Frank copula can capture both lower and upper tail dependencies, although it does not exhibit 

tail dependence explicitly. It is often used for its flexibility in modeling different levels of 

dependency between variables (Durrleman et al., 2000).is defined by: 

                              𝐶𝐹𝑟𝑎𝑛𝑘(𝑢1, 𝑢2; 𝜃 ) = −
1

𝜃
log(1 +

(exp(−𝜃 𝑢1)−1)(exp(−𝜃 𝑢2)−1)

exp (𝑒𝑥 𝑝(−𝜃 )−1
)                 (6) 

Where θ is a non-zero real number that governs the dependency level. 

 

3-2-5 Student's t Copula 

The Student’s t copula extends the Gaussian copula to include tail dependence. It is symmetric and 

can capture the tail dependence in both the lower and upper tails, making it particularly useful for 

modeling data where extreme values are correlated (Demarta and McNeil, 2005). 

The Student's t copula, defined by its correlation coefficient 𝜌 and degrees of freedom 𝜈, is given 

by: 

                               𝐶𝑡(𝑢1, 𝑢2; 𝜌, 𝑣 ) = 𝑇𝑣,𝜌(𝑡𝑣
−1(𝑢1), 𝑡𝑣

−1(𝑢2))                                              (7) 

Where 𝑇𝑣,𝜌 is the CDF of the bivariate Student's t-distribution with 𝜈 degrees of freedom and 

correlation 𝜌, and 𝑡𝑣
−1  is the quantile function of the univariate Student's t-distribution with 𝜈 

degrees of freedom. 

 

3-3 Joint Model Specification 

To construct the joint distribution of the response variable and the covariates, we employ Sklar's 

theorem, which states that any multivariate cumulative distribution function can be expressed in 

terms of univariate marginal distribution functions and a copula that describes the dependence 

structure between the variables (Sklar, 1959) 𝑌1, 𝑌2, … , 𝑌𝑛  with marginal CDFs 𝐻  is: 

              𝐻(𝑦1, 𝑦2, … , 𝑦𝑛) = 𝐶(𝐹1(𝑦1), 𝐹2(𝑦2), … , 𝐹𝑛(𝑦𝑛))                                                     (8) 

and the corresponding joint probability density function (PDF) is: 

ℎ(𝑦1, 𝑦2, … , 𝑦𝑛) = 𝑐(𝐹1(𝑦1), 𝐹2(𝑦2), … , 𝐹𝑛(𝑦𝑛))                                                        (9) 

For each copula, we estimate the parameters using the Inference Functions for Margins (IFM) 

method, which is a two-step procedure. First, we estimate the parameters of the marginal 

distributions, and then we estimate the copula parameters using the pseudo-observations derived 

from the marginal models (Joe, 1997). 

 

4. Estimation methods: 
 Fitting a tail-dependence copula-based regression model commonly involves two main steps: the 

estimation of marginal distributions and the estimation of the copula parameters. Here, we'll focus 

on the use of parametric methods and the maximum likelihood estimation (MLE) method. 

Step 1: Estimation of Marginal Distributions: 

Suppose we have a dataset of n observations of a random vector X = (X1, X2, ..., Xd), and we 

want to fit a copula model to this data. 

The first step is to transform each variable to be marginally Uniform (0,1). This can be done in 

several ways, including empirical distribution function transformation or parametric 

transformation, this is often done by fitting a parametric model to each margin and applying the 

cumulative distribution function (CDF) to each data point (Genest and Favre, 2007). 
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Step 2: Estimation of Copula Parameters: 

Parameter estimation can be done using different methods like the Inference Functions for Margins 

(IFM) method, Maximum Likelihood Estimation (MLE), Pseudo Maximum Likelihood (PML)and 

Kendall's tau methods 

 

• IFM Method: 

1. Estimate the marginal distributions of 𝑋X and 𝑌Y separately. 

2. Transform the marginals to a uniform using the estimated CDFs:  𝑈=(𝑋), 𝑉=𝐹𝑌(𝑌). 

3. Estimate the copula parameters 𝜃θ using the pseudo-observations 𝑈U and  𝑉V, (Joe, 

2005).  

 

• MLE: can be defined as: 

𝜃 = arg max ∑ log  𝑐(𝑢𝑖, 𝑣𝑖 , 𝜃)𝑛
𝑖=1                                                                              (10) 

Where (𝑢, ;) is the density of the copula and (𝑢𝑖,) are the pseudo-observations. 

A copula model can be fit to the data. Different copula models permit different amounts and types 

of dependence, including tail dependence, (Nelsen, 2006). 

 

• PML:  

This is like IFM, but it estimates the copula parameters using the empirical cumulative distribution 

function (CDF) of the data rather than the fitted CDF. 

 

• Kendall's tau: 

 A non-parametric measure of correlation between two random variables (Ferrario et al., 2008). 

In the context of copulas, Kendall's tau can be used to estimate the parameter of a copula that 

captures the dependence structure between the variables.  

 

Step 3: Copula-Based Regression Model 

To integrate copulas into regression: 

• Assume 𝑌=(𝑋)+𝜖Y=g(X)+ϵ, where 𝜖ϵ is a random error. 

• Model (𝑋,)(X,Y)  using a copula, which links the marginal distribution of 𝑋X to the 

conditional distribution of 𝑌Y given 𝑋X. 

The regression function (𝑋)g(X) can be estimated non-parametrically or parametrically, and the 

dependence between 𝑋X and 𝜖ϵ is modeled by the selected copula 

 

Step 4: Model Evaluation 

Various statistical criteria and tests can be used to assess the goodness-of-fit and compare different 

copula models. Among these methods, the Akaike Information Criterion (AIC) is widely used.  

 

• Akaike Information Criterion (AIC) 

The Akaike Information Criterion (AIC) is a well-established method used to compare different 

parametric models based on their fit to the data while penalizing for the number of parameters used 

(Burnham and Anderson, 2002)., and defined by: 

AIC=2k−2ln(L)                                                                                                     (11) 
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where: 

k is the number of parameters in the model, and L is the maximum value of the likelihood 

function for the model. 

• Residual Analysis: Check residuals for independence and appropriate distribution. 

• Predictive Performance: Use cross-validation or out-of-sample testing to assess 

predictive accuracy. 

This approach provides a structured way to analyze dependencies in the tails of distributions, 

which is critical for accurate risk assessment in fields such as finance and insurance. 

 

5. Application to health insurance data 
5-1 Data description: 

In this section, we apply the proposed copula-based regression to the medical insurance claim data 

which were selected from ACME Insurance Inc. which offers affordable health insurance to 

thousands of customers all over the United States, using information sourced from Kaggle 

(https://www.kaggle.com/), contains 1338 observations that consists of the following seven risk 

factors such as their age, sex, BMI, children, smoking habits and region of residence. 

 

Data variables: 

1. Age: The age of the main person covered by the insurance. 

2. Sex: The gender of the person buying the insurance, either female or male. 

3. BMI: Body Mass Index, a measure that compares weight to height to assess if a 

person's weight is high or low for their height. It's calculated as weight in kilograms 

divided by height in meters squared. A healthy BMI is typically between 18.5 to 24.9. 

4. Children: No. of children or dependents are covered by health insurance. 

5. Smoker: Indicates if the person buying the insurance smokes. 

6. Region: The area where the insured person lives in the US, such as the northeast, 

southeast, southwest, or northwest. 

7. Charges: The medical costs that the health insurance bills to an individual. 

We split the data set into two parts: the training set (70%) with 936 observations and the test set 

(30%) with 402 observations. The training set is used to fit the models, while the test set is used to 

test the model and evaluate the accuracy.  

The data set was used for exploratory data analysis including the examination of summary 

statistics, variable distributions, and relationships between variables to inform the choice of 

predictive models and feature selection, as shown in Table (1)  

Table 1. Descriptive statistics for data 
 Age BMI children charges 

Min. 18.00 15.960 0 1121.874 

Q1 27.000 026.296 0 4740.287 

Median 39.000 30.663 1 9382.033 

Mean 39.207 0.07485 1.095 13270.422 

Q3 51.000 034.694 2 16639.913 

Max 64.000 53.130 5 63770.428 

StD 14.050 6.098 1.205 12110.011 

https://www.kaggle.com/
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Figure 1. Histogram of numerical variables  

From Figure (1) BMI data is the only feature that follows a normal distribution, with an average 

slightly above 30, which is higher than the typical maximum healthy value. The age data is mostly 

uniform but has more entries for younger ages. Also, the data for the number of children and 

medical charges are both skewed to the right, this skewness in the number of children is expected 

as most people nowadays tend to have fewer children or none, and older parents no longer count 

their grown children as dependents.  

The skewness in medical charges shows that a few people have much higher charges than average, 

which could skew the results of the study. This skewness and the non-normal distribution of these 

features explain why there is a low correlation between them. 
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Figure 2. Boxplot of descriptive variables 

The box plot analysis indicates significant differences in healthcare charges between males and 

females, with males incurring higher median charges and exhibiting greater variability. Both 

groups show outliers indicating occasional extremely high charges. Also, the box plot shows that 

individuals who smoke incur significantly higher healthcare charges compared to non-smokers. 

The median charges for smokers are notably higher and the range of charges (as represented by 

the box and whiskers) is broader, indicating greater variability in the charges they face. Non-

smokers not only have lower median charges but also a more compressed range of charges, 

suggesting less variability. Finally, the box plot displays healthcare charges across four regions, all 

regions have outliers indicating extremely high charges, with the Southeast showing the most 

extremes.  

This suggests that while there is variability in healthcare charges across all regions, the Southeast 

tends to be more expensive on average, with more frequent occurrences of very high charges. 

Table 2. The correlation matrix between the features 

 

 

 

 

Figure 3. Correlation heatmap  

Proceeding with a multivariate analysis, we will create a heatmap to illustrate the correlations 

among our data variables, as depicted in Figure (3). This visual representation through the heatmap 

will facilitate the examination of the correlations among different variables. We are particularly 

focused on uncovering the connections between charges and various demographic and medical 

data elements. In the heatmap, the intensity of the colors signifies the magnitude of the correlation 

 

 age BMI children charges 

age 1.000000 0.109272 0.042469 0.299008 

BMI 0.109272 1.000000 0.012759 0.198341 

children 0.042469 0.012759 1.000000 0.067998 

charges 0.299008 0.198341 0.067998 1.000000 
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between pairs of variables. Such a correlation matrix acts as a concise overview of our dataset, 

providing a basis for subsequent investigations, or serving as a diagnostic instrument for more 

complex analyses. 

Before analysis, the dataset was preprocessed and cleaned. This process included checking for 

missing values, outliers, and inconsistencies. Missing values were imputed or removed, and 

outliers were removed based on the specific variable and its distribution.  

Multicollinearity in multiple regression occurs when two or more predictors are closely related, 

meaning one predictor can predict another. This situation complicates estimating the individual 

impact of each predictor on the outcome. 

One way to identify multicollinearity is by using the Variance Inflation Factor (VIF), which 

measures how much the variance of an estimated coefficient increases when multiple predictors 

are used compared to when the predictor is used alone. A VIF of 1 suggests no multicollinearity, 

while values between 5 and 10 usually indicate its presence. To resolve multicollinearity, you can 

remove the predictor with the highest VIF 

Table 3. VIF for variable 

 age BMI children smoker region 

GVIF 1.016188 1.104197 1.003714 1.006369 1.098869 

Df 1 1 1 1 3 

GVIF^(1/(2*Df)) 1.008061 1.050808 1.001855 1.003179 1.015838 

 

None of the predictors in our case has a high value of VIF. Hence, we don’t need to worry about 

multicollinearity in our case. 

 

5-1 Modeling  

We used the "copula" package in R to find the best-fitted copula model for bivariate and 

multivariate cases. Table (4) below details the results of various copula methods and correlation 

measures and reveals significant insights into the level of binary dependence between insurance 

charges and several explanatory variables, specifically BMI, age, number of children, sex, and 

smoking status 

Table 4. Level of binary dependence between charge and explanatory variables 

Methods 
charges 

parameter BMI age children sex smoker 

Gaussian Copula 
rho 0.1269 0.6972 0.1465 -0.02003 0.7481 

Std. 0.032 0.024 0.026 0.044 0.027 

Clyton Copula 
alpha 0.1763 1.93 0.2066 -0.02519 2.33 

Std. 0.049 0.162 0.041 0.055 0.242 

Gumbel Copula 
alpha 1.088 1.965 1.103 - 2.165 

Std. 0.024 0.081 0.021 - 0.121 

Frank Copula 
alpha 0.7332 5.577 0.8487 -0.1148 6.476 

Std. 0.005 0.168 0.004 0 0.278 

t-Copula 
rho 0.1269 0.6972 0.1465 -0.02003 0.7481 

Std. 0.032 0.024 0.026 0.044 0.027 

Spearman’s 𝝆  
rho 0.116109 0.5526922 0.1200489 -0.01561484 0.6587308 

Std. 0.03039254 0.02550118 0.03037821 0.03059577 0.02302242 

Kendall’s 𝝉 
tau 0.08102956 0.4911357 0.0936326 -0.01275542 0.5381027 

Std. 0.03049888 0.02665471 0.03046507 0.03059701 0.02579169 
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We see from Table (4) that Both age and smoking status show strong dependence on insurance 

charges across most methods. This is evident from the high parameter values in Gaussian Copula, 

Clayton Copula, Gumbel Copula, Frank Copula, and t-Copula, as well as high correlation 

coefficients in Spearman’s ρ and Kendall’s τ. This suggests that age and smoking status are 

significant predictors of insurance charges. There is a moderate level of dependence between BMI 

and insurance charges, indicated by consistent moderate values across the Gaussian Copula, t-

Copula, and other correlation measures. This suggests that BMI is a relevant but less potent 

predictor compared to age and smoking status. The dependence between the number of children 

and insurance charges is generally low to moderate, as reflected in the correlation coefficients and 

copula parameters. This indicates that while the number of children has some influence on 

insurance charges, it is less significant compared to other factors like age and smoking status. The 

parameter and correlation values associated with sex are very low and even negative in some cases, 

suggesting a very weak or negligible dependence between gender and insurance charges. This 

indicates that sex is not a significant predictor of insurance charges in this analysis. 

The standard errors provided with each parameter estimate are relatively small, indicating a high 

level of precision in the estimates. This is crucial for confirming the reliability of the observed 

dependencies. 

 
Person’s coefficients  

 
 Kendall’s coefficients 

Figure 4. Correlation heatmap 

 
The correlations matrix heatmap as shown in Figure (4) provides a clear depiction of how various 

factors are interrelated with insurance charges. Smoking status and age emerge as the most 

influential factors on insurance charges, underscoring their importance in risk assessment and 

pricing strategies in the insurance industry. Other factors like BMI, number of children, and sex 

show weaker associations, suggesting that their roles in insurance pricing are comparatively 

limited. This analysis is crucial for stakeholders in making informed decisions regarding policy 

formulation and risk management. 

5-2-1 Bivariate Model 

The scatterplot visualizes the relationship between Body Mass Index (BMI) and insurance charges 

using data points and a fitted line from an ordinary Generalized Linear Model (GLM). 
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Figure 5. Binary GLM model 

 

Figure (5) shows a positive correlation between BMI and charges which means that people with 

higher BMI, as they are at higher risk, spend more on medical insurance. 

The study employs multiple modeling techniques, including ordinary Generalized Linear Models 

(GLM) and various copulas (Gaussian, Clayton, Frank, Gumbel, and t-copula), to explore the 

relationship between insurance charges (dependent variable) and Body Mass Index (BMI, 

explanatory variable). The models compare normal, gamma, and negative binomial (NB) families, 

focusing on estimates, standard errors, significance levels (p-values), and correlation coefficients 

(𝜌) 

Gamma and Negative Binomial distributions offer specific advantages in these contexts, 

particularly for modeling skewed and over-dispersed data (Cameron and Trivedi, 1998) 

Table 5. Bivariate models 

Model family 
Estimate Std. Error Pr(>|z|) 

roh 
Std. 

error Intercept BMI Intercept BMI Intercept BMI 

GLM 

ordinary 

normal -621.55 452.99 2021.22 64.61 0.759 4.52e-12 *** 

  gamma 1.496e-04  -2.326e-06 1.049e-05 3.076e-07 < 2e-16 *** 9.36e-14 *** 

NB 8.412204 0.034546 0.139042 0.004444 < 2e-16 *** 7.67e-15 *** 

Gaussian 

copula 

normal -967.25 464.25 1989.98   63.57 0.627 6.04e-13 *** 

0.1546 0.035 gamma 1.513e-04   -2.375e-06 1.030e-05 3.003e-07 < 2e-16 *** 7.42e-15 *** 

NB 8.393335 0.035109 0.136923 0.004374 <2e-16 *** 1e-15 *** 

Clyton 

copula 

normal -700.78 455.43 1983.69 63.34 0.724 1.33e-12 *** 
0.2194 

alpha 
0.055 gamma 1.504e-04 -2.347e-06 1.034e-05 3.017e-07 < 2e-16 *** 1.91e-14 *** 

NB 8.421309 0.034214 0.136516 0.004359 < 2e-16 *** 4.2e-15 *** 

Frank 

copula 

normal 99.61 428.69 2001.67 63.83 0.96     3.25e-11 *** 
0.8967 

alpha 
0.006 gamma 1.459e-04 -2.207e-06 1.045e-05 3.065e-07 < 2e-16 *** 1.23e-12 *** 

NB 8.449728 0.033304 0.137631 0.004389 < 2e-16 *** 3.25e-14 *** 

Gumble 

copula 

normal -300.64 442.84 1998.14 63.88 0.88     7.73e-12 *** 
1.11 

alpha 
0.028 gamma 1.483e-04 -2.288e-06 1.044e-05   3.061e-07   < 2e-16 *** 1.8e-13 *** 

NB 8.439756 0.033688 0.137459 0.004395 < 2e-16 *** 1.78e-14 *** 

t- copula 

normal -293.98 442.20 2002.24 63.96 0.883 8.73e-12 *** 

0.1546 0.035 gamma 1.484e-04   -2.287e-06   1.047e-05   3.070e-07 < 2e-16 *** 2.14e-13 *** 

NB 8.430442 0.033955 0.137706 0.004399 < 2e-16 *** 1.17e-14 *** 

 
GLM ordinary models as shown in table (5) significant effects of BMI on charges across all 

families (normal, gamma, NB), with p-values consistently less than 0.05, indicating strong 

evidence against the null hypothesis of no effect. Gaussian copula maintains a similar pattern to 
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ordinary GLM but with a slightly lower correlation coefficient (𝜌=0.627) indicating moderate 

dependency between charges and BMI. Clayton and Frank's copulas suggest higher dependencies 

(𝜌 values of 0.724 and 0.8967, respectively), with Clayton showing stronger dependency than 

Gaussian but weaker than Frank. These models indicate a robust effect of BMI on charges. Gumbel 

and t-copula show the highest 𝜌 values (1.11 and 0.883, respectively), suggesting the strongest 

dependence among the models tested. 

 

Model Fit and Complexity: 

The AIC and log-likelihood values as shown in table (6) across models suggest that the Gaussian, 

Clayton, and t-copula models provide competitive fits, with the t-copula and Gumbel copula giving 

slightly better AIC in certain instances. 

The negative binomial family consistently shows a better fit across different copulas compared to 

the normal and gamma families, indicating its appropriateness in handling overdispersion in the 

data. 

Table 6. Goodness of fit measures for bivariate model 

Model family 
The goodness of fit measures  

AIC 2 x log-likelihood 

GLM ordinary 

normal 20247 

-19530.4550 gamma 19546 

NB 19536 

Gaussian copula 

normal 20243 

-19526.1680 gamma 19542 

NB 19532 

Clyton copula 

normal 20245 

-19528.4620 gamma 19543 

NB 19534 

Frank copula 

normal 20251 

-19534.0630 gamma 19550 

NB 19540 

Gumble copula 

normal 20248 

-19531.8150 gamma 19547 

NB 19538 

t- copula 

normal 20248 

-19531.5460 gamma 19547 

NB 19538 

 

Figure (6) provides a comprehensive view of the data distribution and the relationship between 

Body Mass Index (BMI) and insurance charges. 
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Figure 6. Relationship between (BMI) and insurance charges. 

 

The combined analysis from the figure highlights a statistically significant but weak positive 

correlation between BMI and insurance charges. While there is a tendency for higher BMI to be 

associated with higher charges, the relationship is not strongly linear, and considerable variability 

in charges exists across different BMI levels. The density plots provide useful insights into the 

distribution patterns of both charges and BMI, showing a predominance of average BMI values 

and a higher frequency of lower insurance charges. 

This visualization emphasizes the importance of considering other factors beyond BMI when 

predicting insurance charges, as the weak correlation suggests that BMI alone may not be a robust 

predictor of charge levels. Further analysis could explore additional variables that might influence 

insurance charges to develop a better understanding of the factor’s insurance costs. 

5-2-2 Multivariate Model 

The presented results in Table (7) show the Estimated coefficients for various generalized linear 

models (GLMs) using different copulas (Gaussian, Clayton, t-copula, and Frank) and different 

family distributions (Normal, Gamma, Negative Binomial (NB)). The models evaluate the impact 

of several predictors—BMI, age, children, sex, and smoker status—on insurance charges The 

intercepts across models vary significantly, suggesting different baseline levels for the dependent 

variable when all predictors are at their reference levels. 

BMI generally has a positive coefficient across models, indicating an increase in the dependent 

variable with higher BMI. The effect is statistically significant in most cases, Age also has a 

consistent positive effect across the models, showing that the dependent variable increases with 

age. The effect of having children on the dependent variable is mixed, with some models showing 

a positive effect and others showing no significant impact, The influence of variable sex is 

generally not significant or slightly negative in most models, suggesting minimal or adverse effects 

on the dependent variable. Finally, the status of being a smoker has a significant positive effect on 

the dependent variable across all models, indicating that smokers tend to have higher values of the 

dependent variable than non-smokers. 
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Correlation (Rho) and Standard Error indicate the model's estimation precision and the strength of 

relationships within the data structure, respectively. The significant and consistent impact of BMI, 

age, and smoker status across different models underscores their importance in predicting the 

dependent variable. The variability in the effects of children and sex suggests that these factors 

may interact with other variables or have context-specific impacts. 
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Table 7. Estimated coefficients for Multivariate models 

Model 
Family of 

GLM 
coefficient 

parameter 
Rho 

Std. 

error (Intercept) Bmi age children sex smoker 

Gaussian 

copula 

Normal 

Estimate -7261.07     315.49       252.72 219.59 -163.61      3329.71 

0.1451 0.017 

Std. Error 1968.86 57.88    25.76    226.49    318.61   325.91   

Pr(>|t|) 0.000239 *** 6.42e-08 *** < 2e-16 *** 0.332537     0.607727     < 2e-16 *** 

Gamma 

Estimate 1.852e-04   -1.459e-06   -1.253e-06   -1.924e-06   1.400e-06   -1.378e-05   

Std. Error 1.149e-05   2.969e-07   1.473e-07   1.224e-06   1.778e-06 1.382e-06 

Pr(>|t|) < 2e-16 *** 1.06e-06 *** < 2e-16 *** 0.116     0.431     < 2e-16 *** 

NB 

Estimate 7.676512 0.025379 0.022019 0.026068 -0.015300 0.235785 

Std. Error 0.134259 0.003947 0.001757   0.015445 0.021726   0.022224   

Pr(>|z|) < 2e-16 *** 1.27e-10 *** < 2e-16 *** 0.0914 . 0.4813 < 2e-16 *** 

Clyton copula 

Normal 

Estimate -7007.21 352.08 231.62 -96.49 -363.29 3192.95 

0.3575  

alpha 
0.03 

Std. Error 2015.52   59.69 26.08 239.52   338.38   353.85    

Pr(>(>|t|) 0.000531 *** 5.13e-09 *** < 2e-16 *** 0.687148 0.283266 < 2e-16 *** 

Gamma 

Estimate 1.880e-04   -1.672e-06   -1.216e-06 -3.935e-07   1.125e-06   -1.381e-05   

Std. Error 1.165e-05   3.078e-07   1.527e-07 1.242e-06   1.817e-06    1.555e-06   

Pr(>(>|t|) < 2e-16 *** 7.16e-08 *** 4.92e-15 *** 0.752     0.536     < 2e-16 *** 

NB 

Estimate 7.669944    0.030022 0.019959 -0.002187 -0.050205 0.252843 

Std. Error 0.136663 0.004047 0.001768 0.016241 0.022943 0.023992 

Pr(>|z|) < 2e-16 *** 1.19e-13 *** < 2e-16 *** 0.8929     0.0287 *   < 2e-16 *** 

t-copula 

Normal 

Estimate -8342.39 365.10 236.95 107.85 175.59 3576.64 

alpha 

0.1451 
0.017 

Std. Error 1994.62   58.59 25.61 234.64 324.72 342.99 

Pr(>|z|) 3.16e-05 *** 6.97e-10 *** < 2e-16 *** 0.646     0.589     < 2e-16 *** 

Gamma 

Estimate 1.875e-04 -1.543e-06 -1.211e-06 -2.233e-06   -8.431e-07 -1.308e-05   

Std. Error 1.143e-05 3.152e-07   1.512e-07 1.246e-06 1.321e-06 1.261e-06 

Pr(>|z|) < 2e-16 *** 1.16e-06 *** 3.39e-15 *** 0.0735 .   0.5235     < 2e-16 *** 

NB 

Estimate 7.701521 0.026155 0.020416 0.027804 -0.0076 0.253076 

Std. Error 0.136640 0.004013 0.001754 0.016073 0.022244 0.023496 

Pr(>|z|) < 2e-16 *** 17e-11 *** < 2e-16 *** 0.0837 .   0.7322    < 2e-16 *** 

Frank copula 

Normal 

Estimate -7724.57 330.10 256.63 285.38 -606.76 3943.55 

1.102 0.004 

Std. Error 1965.53   57.99    25.34 226.57 323.78 337.13 

Pr(>|z|) 9.12e-05 *** 1.68e-08 *** < 2e-16 *** 0.2081     0.0612 .   < 2e-16 *** 

NB 

Estimate 7.686036    0.023387 0.023185    0.029300 -0.033385    0.286629 

Std. Error 0.134045   0.003955    0.001728   0.015452 0.022081 0.022991 

Pr(>|z|) < 2e-16 *** 3.35e-09 *** < 2e-16 *** 0.0579 .   0.1305 < 2e-16 *** 
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Model Fit Statistics: 

AIC and Log-Likelihood as shown in table (8) vary across models, with the Frank copula model 

generally showing a slightly better fit based on the AIC and log-likelihood values. 

The Frank and Gaussian copula models generally provide a robust fit as indicated by lower AIC 

values and significant predictor effects.  

Table 8. Goodness of fit measures for the multivariate model 

Model family 
The goodness of fit measures 

AIC 2 x log-likelihood 

Gaussian copula 

normal 20075 

-19301.1350 gamma 19366 

NB 19315 

Clyton copula 

normal 20100 

-19317.6070 gamma 19383 

NB 19332 

Frank copula 

normal 20047 

-19267.7280 gamma - 

NB 19282 

t- copula 

normal 20066 

-19300.65 gamma 19365 

NB 19315 

 

Figure (7) comprises a matrix of scatter plots, histograms, and correlation coefficients, providing 

a visualization of relationships and distributions among several variables: medical charges, BMI, 

age, number of children, sex, and smoking status. 

 

Figure 7. Matrix of scatter plots 
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This visualization aids in understanding the relationships between medical charges and various 

demographic factors. Age and BMI show positive correlations with medical charges, highlighting 

them as significant factors in predicting medical expenses. The correlations involving sex and 

smoker status with other variables suggest more complex relationships that might require further 

statistical or qualitative analysis to fully interpret. The data on children, sex, and smoker status 

provide insights into demographic and lifestyle patterns that could be pivotal in more detailed 

demographic studies or tailored health interventions. 

6. Conclusion 
In this study, when applying a bivariate model case, we found that BMI has a consistently 

significant impact on insurance charges across various models and families, reaffirming its 

relevance as an explanatory variable in insurance charge predictions. While ordinary GLM 

provides a strong baseline, copula models, especially the Frank and t-copula, demonstrate higher 

dependencies and slightly better model fits, suggesting their utility in capturing more complex 

relationships between the variables. 

Insurance companies can benefit from using these sophisticated models to more accurately assess 

risk based on BMI, potentially leading to more tailored pricing strategies. Copula models may 

offer enhanced insights into the dependencies between charges and BMI, which could be crucial 

for risk segmentation and policy customization. 

In the second case when applying multivariate models, the results of the study utilizing various 

copula models with Generalized Linear Models (GLMs) significantly demonstrate the intricate 

relationships between multiple variables such as BMI, age, number of children, sex, and smoking 

status in predicting the dependent variable. The application of Gaussian, Clayton, t-copula, and 

Frank copula models allowed for a nuanced understanding of these relationships, highlighting the 

importance of considering dependence structures in multivariate data analysis. 

Significance of Smoking Status and BMI Across all models, the coefficients related to smoking 

status and BMI consistently showed significant p-values (almost all < 2e-16), indicating a strong 

influence on the dependent variable. This suggests that smoking status and BMI are critical factors 

in the studied context. 

The Akaike Information Criterion (AIC) and the log-likelihood values vary across different copula 

families, indicating differences in model fit and efficiency in handling the data structure. In this 

study, the t-copula and Frank copula models generally provided a better fit (lower AIC and higher 

log-likelihood) compared to other models, suggesting their suitability in capturing tail 

dependencies and asymmetric relationships. 

This research underscores the critical role of copula models in understanding and modeling 

dependencies among multiple variables in a multivariate setting. By employing different families 

of copulas: 

The insights from this study are particularly valuable for practitioners and researchers involved in 

risk assessment, policy-making, and strategic planning where understanding complex, multivariate 

relationships is essential. By integrating the findings of this research, better-informed decisions 

can be made, tailored interventions can be designed, and more robust predictive models can be 

developed. 
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