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 Current studies evaluated the effectiveness of categorization techniques 

primarily using real datasets with unreported or unknown statistical features. 

This simulation-based study aims to compare the performance of statistical 

models (logistic regression, probit regression, and discriminant analysis) with 

machine learning algorithms (support vector machines, classification and 

regression trees, and k-nearest neighbors) to comprehensively understand their 

suitability for classification tasks. Although simulated datasets are used to 

control their statistical characteristics, the Pima Indian Diabetes real dataset is 

used to verify the study findings. The outcomes of this study have the potential 

to guide practitioners and researchers in selecting the most appropriate modeling 

technique for their specific needs, ultimately enhancing the accuracy and 

reliability of classification outcomes across various domains. The results 

revealed that the two statistical models -probit and logit- outperformed in most 

simulation scenarios. Markedly, the well-grounded, theory-based models of the 

logit regression and the probit regression models yielded the most accurate 

predictions in 78.5% and 83.6% of the simulated scenarios, respectively. 

Interestingly, the performance of the probit model was the best when the binary 

response variable was balanced (τ=0.50) and when it was too imbalanced 

(τ=0.90). Notably, the resulting performance metrics of the real dataset refer to 

the logit, followed by the probit, being the best-predicting models, which 

resembles the outcome of the simulation study. 

 

1. Introduction 

Categorical variables are commonly imperative in many disciplines other than statistics, such as 

engineering, clinical medicine, genetics, Machine Learning (ML), and social sciences, among 

others. Notwithstanding their importance in other fields of study, significant progress occurred in 

statistics more than a century ago regarding the development of regression models where the 

dependent variable is categorical. These are the qualitative response models (Amemiya, 1981). 

Such models are also referred to as quantal, discrete, or categorical models. In such models, the 

researchers’ objective may be to estimate the probability of success or failure conditional on a set 

of regressors (Powers & Xie, 2008). Thus, such techniques are appropriate for the advancement of 

classification models. Thus, in addition to their resulting probabilities of success and failure, 

classification models can be employed to classify a new observation into one category or the other  
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in the case of binary response variables. Although different categorical response models exist, the 

most commonly applied are the logistic regression, the probit regression, and the Discriminant 

Analysis (DA). 

The term ML was first introduced by Arthur Samuel in 1959 (Arthur, 1959). ML is the field of 

study that trains computers/systems to operate independently and improve with experience. 

Accordingly, ML algorithms construct a model based on sample data- training data- to make 

predictions or decisions. Furthermore, ML utilizes notions from various disciplines: statistics, 

mathematics, philosophy, computational complexity, and artificial intelligence. Markedly, interest 

in applying contemporary ML techniques as alternatives to statistical methods is widely increasing 

(Lynam et al., 2020). For that, colossal improvement has been achieved by ML methods 

concerning the simple binary discrimination problem that qualitative response models can target. 

Further, it was claimed that the successful use of ML in several fields indicates promising 

applications in other fields. However, the advantages and superiority of ML-based classification 

methods compared with more traditional statistical ones need to be assessed, validated, and 

verified in all fields of application (Côté et al., 2022). With that in mind, such alternative ML 

algorithms include Decision Trees (DTs), Support Vector Machines (SVMs), K-Nearest Neighbors 

(KNN), Random Forest (RF), Gaussian Process (GP), Naive Bayes (NB) and Artificial Neural 

Networks (ANN). 

Will analyzing the same data set by the aforementioned models reveal the same classification 

performance? If not, which one will be the best-fit model? Findings related to the superiority of 

classification accuracy of newer classification approaches compared to traditional, less computer-

requiring methods and the stability of the findings are still controversial. Although many previous 

studies have compared logistic regression to various ML techniques, to the researcher’s 

knowledge, not much research has considered the comparison between ML methods and either 

probit regression or DA. To conclude, the study will include an empirical analysis represented by 

a simulation study and the application of a real dataset using the six techniques. The results will 

be compared to establish the similarities and discrepancies between them. In order to compare the 

models mentioned above, indicators such as accuracy, sensitivity, specificity, and the Area Under 

the Receiver Operating Characteristic (ROC) Curve (AUC) will be considered. 

This being the objective, the study will be organized such that the relevant literature comparing 

the six models, whether concerned with the comparison of the statistical models or that related to 

comparing statistical models with ML classifiers, will be depicted in Section 2. The well-grounded 

statistical models will be presented in Section 3. Next, Section 4 will be devoted to illustrating the 

selected ML algorithms. Subsequently, Section 5 will be devoted to the simulation study, including 

its factors, performance measures, and simulation configuration. Then, the resulting values of the 

performance measures will be discussed in Section 6. Finally, the study will be concluded with 

possible future work in Section 7. 
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2. Literature review 

This section presents the relevant literature for this study in chronological order. It will be divided 

into two parts. The first section, Statistics-based Studies, will introduce some literature that 

compares the three statistical models, while the second section will depict studies that include 

logistic regression and various ML algorithms. 

2.1 Statistics-based studies 

Interest in comparing the different qualitative response models' performance started very early. In 

1978, Press and Wilson (1978) examined theoretical arguments for using logistic regression 

compared to utilizing DA to deal with the classification problem. Two empirical studies of non-

normal classification problems were carried out in this research. The results of this comparison 

revealed that the logistic regression had an average percentage of 67 correct classifications in both 

the training and test datasets. On the other hand, 63% were correctly classified by DA on average. 

Regarding the second study, the outcomes disclosed that the average correctly grouped rate for 

logistic regression was 80%, while that for DA was 68% for the training sets. The respective rates 

for the validation sets were 72 and 68 percent. To summarize, the research results revealed that the 

logistic regression outpaced the DA according to the proportion of correct classification.  

Amemiya (1981) introduced some facts about the linear probability model, probit, and logistic 

regression. It was noted that the probit and logit models often arrive at similar results. For a dataset 

Theil utilized, Amemiya computed four estimators, and it was concluded that the estimators of LP-

least squares and LP-weighted least squares were better than those of the logit and probit. However, 

the probit estimators outpaced the logit. Regarding the comparison between the logistic regression 

and DA, the study found that the DA estimator is the genuine MLE; consequently, it should be 

asymptotically more efficient than its logit counterpart. However, if the normality assumption is 

not satisfied, the DA estimator misses its consistency, while the logit MLE holds it. Thus, this 

study concludes that no estimator is the best in all cases. That is, each model has situations where 

it excels and others where it performs poorly. Similarly, Pohar et al. (2004) inspected the dilemma 

of selecting between the LDA and the logit. The authors conducted various simulations to 

scrutinize the performance of the methods. The reference simulation was the one in which all of 

the requirements for the LDA were met. Then, the effects of varying the sample size, covariance 

matrix, and the Mahalanobis distance, among others, were examined. The findings showed that 

the sample size had the most glaring influence on the distinction between approaches. Moreover, 

the LDA is the best method when the regressors are normally distributed. However, in general, the 

outcomes of the logit are consistently near to and slightly inferior to those of the LDA in most 

scenarios. However, when LDA’s presumptions are not met, using it is not warranted; in contrast, 

the logit produces good results regardless of the distribution.  

Likewise, Prempeh (2009) addressed whether applying the DA and the logistic regression 

approaches to the same data set would produce the same conclusion. In terms of the proportion of 

accurate classifications, the logistic regression resulted in 91.1%, while the DA yielded 88.9%. 

Consequently, regarding the issue of classification competencies, the first model performed better      
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than the latter. Further, upon using the hold-out sample to test the efficiency of the estimated 

models, both the DA and the logit could correctly classify the bankrupt and non-bankrupt firms. 

Finally, the study concluded that logistic regression yielded superior classification results than DA 

in the presence of multicollinearity problems in the covariates. 

In research conducted by Cakmakyapan and Goktas (2013), a Monte Carlo simulation was 

undertaken to compare the probit and logit regressions across varying conditions. For instance, 

different sample sizes, varying correlations between the predictand and the predictors, and 

different thresholds for converting the latent variable to be binary. For the simulation procedure, 

the studied latent variable was treated as continuous and impacted by three explanatory variables 

generated from the multivariate standard normal distribution. Moreover, three distinct variance-

covariance matrices - “high,” “low,” and “no”- were employed to generate data from the 

multivariate standard normal distribution. To examine the effect of sample size in picking a model, 

5 different sample sizes were considered: 40, 100, 200, 500, and 1000. For each of the matrices 

and sample sizes, data generation was repeated 1000 times. The paper disclosed that the logistic 

regression was better than the probit regression in “low” and “high” cases for 500 and 1000 sample 

sizes. In addition, the probit model was better in small sizes (40, 100, and 200). Further, in the 

“no” case, the two models fitted the data similarly regardless of any conditions. 

In a similar but more recent study by Cakmakyapan and Goktas (2013) is that executed by Alsoruji 

et al. (2018), the researchers conducted a simulation to compare the probit and logit models under 

various sample sizes, dependent-independent variables’ correlation coefficients, and latent 

response In variable cut points. In the simulation, the regressand is influenced by three covariates 

from the standard multivariate normal distribution. Three different matrices of the variance-

covariance are also considered. Further, five sample sizes were considered: 70, 100, 200, 500, and 

1000. The results revealed that the logit was better for large samples and high correlation. Besides, 

for small sample sizes, the probit was better.  

As shown, there was no common consensus in the literature regarding the superiority of one 

classification method over the other. Instead, each one performed well under different conditions.  

2.2 Machine learning-based studies  

There is a growing interest in using modern ML techniques as alternatives to statistical 

methodologies (Lynam et al., 2020). Bichler and Kiss (2004) conducted research that evaluated 

the effectiveness of logistic regression, KNN, and decision tree algorithms in campaign 

management. A data collection of 10,054 cases was randomly chosen for this investigation. The 

data contained a dichotomous dependent variable and a total of 165 regressors. Based on the area 

under the ROC curve, the logistic regression performance was the best, followed by the DT and 

then the KNN classifier. According to the predictive accuracy measure, the three approaches were 

almost equally accurate, with a 97.5% accuracy rate.  

Kurt et al. (2008) contrasted the effectiveness of multi-layer perceptrons, logistic regression, and 

CART in forecasting coronary artery disease occurrence. The study was applied to a total of 1,245  
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observations. Between the CART and the logistic regression, the CART outperformed according 

to the various evaluation metrics. In a similar attempt to compare the performance of the logistic 

regression in the face of the CART and neural networks, Liu et al. (2011) applied the three 

techniques to a dataset consisting of 1,225 UK males. The three models’ overall accuracy ranged 

from 0.59 to 0.67, with an overall AUC of 0.65 to 0.72. The performance of the neural networks 

was marginally superior to that of the logistic regression and CART models. 

Musa (2013) implemented a comparative study between the logistic regression and the SVM. The 

data sets used in this study were composed of 13 different datasets with binary class attributes, 

where the data sizes of the various datasets ranged from 270 to 5,473 observations. The findings 

demonstrated that, on average, the SVM and the logistic regression performed equally well in 

balanced and unbalanced data cases across all performance gauges. SVMs, however, might 

perform better on severely unbalanced data sets. In their study, Settouti et al. (2016) relied on the 

work presented in 2006 at the International Conference of the IEEE on Data Mining, which 

identified the 10 topmost ML algorithms appropriate for classification tasks. For instance, Apriori, 

AdaBoost, Bagging, C4.5, CART, Expectation-Maximization, K-means, KNN, NB, and SVM. 

After applying them to twelve medical and biological data samples, they used a set of 

nonparametric statistical tests to rank the selected methods better. The results disclosed that C4.5 

is the best algorithm, followed by Bagging. In contrast, CART and Adaboost had the third rank, 

preceding the SVM, KNN, Apriori, EM, NB, and the K-means, respectively. 

In a study to classify patients with type 1 and type 2 diabetes, Lynam et al. (2020) picked the 

logistic regression in conjunction with ML algorithms: Gradient Boosting Machine (GBM), ANN, 

KNN, RF, and SVM. The models were applied to 1,378 individuals as the training group, while 

the validation sample consisted of 566 participants. According to the findings, a slight difference 

in the performance of the models was revealed. Besides, the calibration slopes applied on the 

validation sample showed outstanding GBM and ANN performance. Moreover, the logit and SVM 

have a satisfactory calibration outcome. The study concluded that the logistic regression performed 

similarly to the selected ML techniques. In 2021, Itoo and Singh (2021) applied logistic regression, 

NB, and KNN to classify credit card transactions as either fraud or non-fraud. A dataset of the 

MasterCard transactions was obtained, containing 284,807 observations. According to the 

outcomes, it was evident that the logistic regression outperformed the other two models. 

Furthermore, the NB method follows the logistic model. Conversely, the KNN had the lowest 

accuracy compared to the logistic regression and the NB models. 

Among the few studies that have been carried out on simulated data and real-life datasets is that 

of Scholz and Wimmer (2021). In this work, 18 classification techniques were compared, including 

LDA, regularized DA, logistic regression, regularized as well as Bayesian logistic regression, 

KNN, CART, and SVM with different kernels in addition to a set of ensemble methods (e.g., 

boosted logistic regression, random forests, bagged CART, Gradient Boosted Trees), among 

others. A sample size of the training dataset and several features were used to approximate data 

complexity. Thus, 4 scenarios were generated based on those factors, namely the low-dimension 

low-sample size, the low-dimension high-sample size, the high-dimension low-sample size 

(HDLSS), and the high-dimension high-sample size (HDHSS). Under these scenarios, 5 data  
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characteristics were included as well. Further, 5 performance measures were utilized to compare 

the selected methods, including the AUC, F1 measure, 𝐻-measure, and the Brier Score. The results 

showed that the logistic regression exhibited a moderate performance. Methods such as SVM 

bagged CART, or C5.0 performed better than the logistic regression in most investigated scenarios. 

For the HDLSS, a heterogeneous ensemble, kernel-based classifiers with polynomial kernel, or 

stabilized nearest neighbor classifiers were recommended. Furthermore, comparative analysis 

using real-world data indicates that the most promising classifiers are ensemble classifiers and 

SVM in terms of their predictive performance. 

Further, Liew et al. (2022) put the Least Absolute Shrinkage and Selection Operator (LASSO), the 

logistic regression, the gradient boosting (Xgboost), the KNN, and the SVM methods in 

comparison, among others. The authors applied the selected models to 3,001 individuals. Further, 

three dichotomous response variables were employed - neck pain, arm pain, and disability. Based 

on the resultant values of the AUC, the Xgboost attained the highest records in predicting the 3 

dependent variables mentioned earlier. Furthermore, the logistic regression had the lowest AUC 

for predicting neck and arm pain. In comparison, KNN had the lowest AUC for predicting 

disability. Further, the logit was the most sensitive for predicting arm pain; LASSO and KNN were 

similarly sensitive for neck pain, while Xgboost and ANN were equally sensitive for disability. 

Speaking of the SVM, it was the most specific for predicting arm pain. The paper hypothesized 

that ML will outperform standard logistic regression in predicting recovery status for people 

suffering from neck pain. Their prediction was partially validated by logistic regression, which 

was the worst performer for predicting arm and neck discomfort, whereas KNN was the worst 

performer for disability. 

Côté et al. (2022) aimed to discover if ML algorithms outperform statistical models in predicting 

vegetable and fruit intake using a sample of 1,147. Classification ML techniques such as DT, 

random forest, and SVM with different kernels -linear, polynomial, radial basis, and sigmoid-, 

KNN, and Adaboost were tested against the logistic regression and LASSO. The logistic regression 

and Lasso predicted the dependent variable with an equal accuracy of 64%. Conversely, between 

the examined ML methods, the SVM with either a radial basis kernel or a sigmoid one predicted 

acceptable classification with an accuracy of 65%. The SVM with a linear kernel was the least 

accurate, with an accuracy of 55%.  

As has been noted from literature which compared the logistic regression with ML algorithms, 

some studies concluded either the superiority of the logistic regression performance over the other 

methods - Itoo and Singh (2021), or at least its equal performance with them - Musa (2013) and 

Faisal et al. (2020). Other studies have figured out that the employed ML approach outperformed 

the logit, such as those of Kurt et al. (2008), Liu et al. (2011), and Farhat and Cheok (2021). 

3. Statistical-based models 

This section focuses on the theoretical foundations of the three widely used statistical models. 

They are extensively employed in various fields for classification, offering valuable insights into 

the relationships between predictors and the probability of belonging to a specific class. 
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3.1 Probit regression 

According to Powers and Xie (2008), the probit uses the standard normal distribution 

transformation to ensure that the resultant probabilities are within the [0,1] range. A binary 

response model with a dependent variable 𝑌𝑖 which has only two values: one if the event occurs 

and zero otherwise, and a set of independent variables 𝓍𝑖 can be represented such that: 

            𝒫(𝑌𝑖 = 1|𝓍𝑖) = ℱ(∑ 𝛽𝑘
𝐾
𝑘=0 𝓍𝑖𝑘) = 𝜙(𝓧𝜷)      (1) 

 

For a binary regresand 𝑌𝑖, and a set of predictor variables 𝓍𝑖, the general form of the probit model 

is expressed by Equation (1), where 𝜙 is the standard normal distribution CDF, 𝜙−1(𝑝𝑖) is its 

inverse, and  𝑝𝑖 is the probability of the ith observation. 

                         𝑝𝑟𝑜𝑏𝑖𝑡 (𝑝𝑖) = 𝜙−1(𝑝𝑖) =  ∑ 𝛽𝑘𝑥𝑖𝑘
𝐾
𝑘=0       (2) 

The Maximum Likelihood Estimation (MLE) technique is employed to estimate the probit 

regression parameters (Greene, 2012). As regards the classification stage of a new observation, 

having estimated the 𝛽′s and calculating the value of 𝒫𝑖 for that new observation, such value should 

be compared with a prespecified threshold to classify the new observation into one class. 

3.2 Logistic regression 

As depicted in Powers and Xie (2008), for a binary logistic model, a dependent variable 𝑌𝑖 has 

only two values, and a set of independent variables 𝓍𝑖, such that: 

𝒫(𝑌𝑖 = 1|𝓍𝑖) = ℱ(∑ 𝛽𝑘
𝐾
𝑘=0 𝓍𝑖𝑘) = 𝛬(𝓧𝜷)      (3) 

Where 𝛽 is a parameter that needs to be estimated, and ℱ or Λ is the logistic CDF. Further, the 

general form of the logistic model is: 

𝒫𝑖 = ℱ(∑ 𝛽𝑘
𝐾
𝑘=0 𝓍𝑖𝑘) =  

1

{1+ℯ
−(∑ 𝛽𝑘

𝐾
𝑘=0 𝓍𝑖𝑘)

}
= 

ℯ
(∑ 𝛽𝑘

𝐾
𝑘=0 𝓍𝑖𝑘)

1+ ℯ
(∑ 𝛽𝑘

𝐾
𝑘=0 𝓍𝑖𝑘)

      (4) 

If 𝒫𝑖 is the success probability, then (1 – 𝒫𝑖) is the probability of failure. Where 
𝒫𝑖

1−𝒫𝑖
 is the odds 

ratio in favor of success. The logistic regression’s outcome variable is the log of the odds ratio ℒ𝑖. 

The MLE technique is applied to estimate the logistic regression parameters. Regarding the 

classification step of a new observation, upon estimating the 𝛽′s and calculating the value of 𝒫𝑖 

for the new observation, such value should be compared with a prespecified threshold to classify 

the new observation into one class. 

3.3 Discriminant analysis 

The main reason for conducting DA is to equip researchers with an approach for classifying an 

object into one of two or more populations. Hence, in DA, the response variable is a category to 

which an observation belongs (Park, 2015). Moreover, it is very similar to probit and logistic 

regressions. In other words, through DA, one can attempt to find a linear function of the set of  
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independent variables, which comes up with the best discrimination between two categories 

(Maddala, 1986). 

For DA, the form of the equation is as follows: 

𝒟𝑡 = 𝜆0 + 𝜆1𝓍1 + 𝜆2𝓍2+. . …+ 𝜆𝑘𝓍𝑘     (5) 

Where 𝒟𝑡 is the discriminant function, and 𝜆0, 𝜆1, … . , 𝜆𝑘 are the discriminant coefficients of the 

covariates 𝓍0, 𝓍1, … . , 𝓍𝑘, respectively. Moreover, given that 𝜇1 and 𝜇2 are the means of the 𝑋’s in 

the two populations, the corresponding means of 𝒟𝑡 in the two classes, according to Maddala 

(1986), are 𝝀′𝜇1 and 𝝀′𝜇2, respectively. Assuming that the covariance matrices are 𝚺𝟏and 𝚺𝟐 and 

that they are equal 𝚺𝟏= 𝚺𝟐=𝚺, the variance of 𝒟𝑡 can be expressed by 𝝀′𝚺𝝀. The discriminant 

coefficients are so determined that the ratio (𝜁) of the between-group difference -means- relative 

to the within-group variation -variance- is maximized (Maddala, 1986).  

Having estimated 𝜆′𝑠, the value of 𝒟𝑡 should then be calculated upon inserting the values of 𝑋1
̅̅ ̅ 

and 𝑋2
̅̅ ̅ resulting in the means of 𝒟t, namely �̅�1 and �̅�2, respectively. As mentioned by Maddala 

0(1986), in order to classify a new observation 𝑥0 into one of two categories, the value of 𝒟𝑡 for 

that observation should be calculated using the values of its explanatory variable. 

At that point assign it to 𝜋1, the first class, if 𝒟0 is nearer to �̅�1 than �̅�2. Further, provided that 

�̅�1 is larger than �̅�2, 𝒟0 will be closer to �̅�1 than �̅�2 if the following condition holds: 

|𝒟0 − �̅�1| > |𝒟0 − �̅�2|       (6) 

4. Machine learning-based models  

The section is dedicated to the theoretical foundations of three popular machine-learning 

algorithms: SVM, CART, and KNN. These algorithms are widely used in various domains for 

classification tasks, offering different approaches to pattern recognition and prediction.  

4.1 Support Vector Machines (SVMs) 

SVMs are a set of supervised learning methods that can be utilized for data classification, 

regression analysis, and outliers’ detection. According to Awad and Khanna (2015), SVM is a 

kernel decision machine that averts the calculation of posterior probabilities while building its 

learning model.  

In the SVM context, a hyperplane is chosen to appropriately separate the data points by their 

respective class, either 0 or 1. While multiple hyperplanes could exist, SVM attempts to find the 

one that best separates the two categories. In essence, the SVM attempts to maximize the width, 

the distance, or the margin M. As explained by Hastie et al. (2009), maximizing this width implies 

to solve the following equations using the Lagrange multipliers’ approach 

𝑚𝑖𝑛
𝜷,𝜷𝟎

1

2
‖𝜷‖2 +𝐶 ∑ 𝜉𝑖

𝑁
𝑖=1        (7) 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝒚(𝒙𝑇𝜷+𝜷𝟎) ≥ 1 − 𝜉𝑖, 𝜉𝑖 ≥ 0 ∀𝑖     (8) 
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Where 𝜉𝑖 is the distances of the misclassified points, and 𝐶 is the cost term, which equals ∞ in the 

case of linearly separable data (Hastie et al., 2009). Further, the regularization, 𝐶, is a parameter 

that differs depending on the optimization aim. Provided that the data is not linearly separable, a 

kernel should be employed to project the data to a higher-dimensional space, kernel space, where 

it is easier to find a linear boundary between the different classes; hence, the data becomes linearly 

separable. There are different types of kernels: the linear, the polynomial, the Gaussian radial basic 

function, the sigmoid function, and the hyperbolic tangent function kernels (Meyer and Wien, 

2021). 

4.2 Classification and regression trees 

The CART classification technique utilizes historical data to build decision trees (Timofeev, 2004). 

It is a binary recursive separating technique that builds classification trees to predict dummy 

outcomes in classification tasks. The most critical stages in constructing the model are splitting, 

stopping, pruning, and optimal tree selection.  

In the first place, the CART starts by selecting the first variable to split the data. To achieve this, it 

calculates the impurity score for each regressor, and the one with the least impurity is picked to 

divide the observations. To determine the aforementioned best splitting value 𝑥𝑗
𝑅 , at each node, the 

CART solves the hereunder maximization problem of the change in the impurity measure ∆𝑖(𝑡): 

𝐴𝑟𝑔𝑚𝑎𝑥
𝑥𝑗≤ 𝑥𝑗

𝑅,𝑗=1,….,𝑀 

[𝑖(𝑡𝑝) − 𝑃𝑙 𝑖(𝑡𝑙) − 𝑃𝑟 𝑖(𝑡𝑟) ]     (9) 

Where 𝑖(𝑡𝑝) is the impurity function of the parent node, 𝑖(𝑡𝑙) and (𝑡𝑟) are the impurity functions 

of the left and right child nodes, respectively. Further,  𝑃𝑙 and 𝑃𝑟 are the probabilities of the left and 

right nodes, respectively (Timofeev, 2004). Equation (9) indicates that the CART explores all the 

possible values of each independent variable of 𝓧 until it obtains the best split point “𝑥𝑗 ≤ 𝑥𝑗
𝑅” 

which maximizes the change of impurity score ∆𝑖(𝑡).  

A stopping criterion must exist; otherwise, the tree construction will persist until it is impossible 

to continue. Consequently, the process comes to an end when: (1) there is a sole observation in 

each of the child nodes; (2) all observations inside each child node possess the same distribution 

of explanatory variables, making further splitting unattainable; or (3) predetermined limit on the 

number of levels in the tree has been specified by the user. Consequently, upon stopping tree 

building, its optimization or pruning should be undertaken to reduce overfitting. 

4.3 K-Nearest neighbours 

As depicted in Lynam et al. (2020), KNN is an approach of supervised learning that can be 

employed for classification and regression purposes. Its primary notion is that observations close 

together in n-dimensional space will have similar outcomes. Thus, the classification involves 

searching the entire dataset for the k-points closest in distance (k-neighbors). Hence, KNN selects 

a set of k objects in the training sample nearest to the test observation and bases the category 

assignment on the predominance of a particular class in this neighborhood (Wu et al., 2008). 
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To categorize a new observation, the distance of it to the classified observations is computed, its 

𝑘-nearest neighbors are identified, and the class of these nearest neighbors is then utilized to 

determine the category of the observation. Primarily, the choice of the 𝑘 value is essential. Further, 

it has been claimed that the optimal value of 𝑘 is usually √𝑁, where 𝑁 is the total sample size 

before partitioning the data into training and testing. Having determined the best value for 𝑘, the  

 

new observation is classified based on the dominating class of its nearest 𝑘 neighbors -majority 

vote rule- as follows: 

𝐴𝑟𝑔𝑚𝑎𝑥
𝜋𝑘 

∑ 𝐼(𝜋𝑘 = 𝒯𝑖)(𝑋𝑖,𝑌𝑖) ∈𝐷𝑥0
      (10) 

where 𝜋𝑘 is a category label, 𝑥0 is the new observation to be classified, 𝐷𝑥0
 is the list of 𝑘 closest 

observations from 𝑥0, 𝒯𝑘 is the class of each 𝑘th nearest neighbors while 𝐼(·) is an indicator function 

which gives the value 1 if its argument is correct and 0 otherwise (Wu et al., 2008). 

5. Simulation study  

The section focuses on the simulation study conducted to investigate the performance of different 

modeling approaches. It details the factors considered in the simulation, the performance measures 

used to evaluate the models, and the configuration of the simulation. It is worth mentioning that 

the simulation study will be performed using the language and environment for statistical 

computing and graphics, R-4.2.3. Besides, all computations will be performed on the BA High 

Performance Computing (HPC) cluster, “BA-HPC-C2”, The Bibliotheca Alexandrina 

Supercomputing Facility.  

5.1 Simulation study factors 

The key objective of this research is to determine whether there is a difference between the most 

famous and regularly used statistical binary qualitative response models and ML classifiers in 

prediction and classification accuracy under various conditions. The simulation shall be 

undertaken with varying sample sizes, changing the number of regressors, diverse levels of 

correlation between the outcome variable and the explanatory ones, and different cut points for the 

response variable.  

The dependent variable will be continuous and affected by a set of explanatory variables. The 

regressand and the predictors will be generated from the multivariate standard normal distribution. 

Hence, the variance-covariance matrix is needed to generate the dataset. In this case, the 

correlation matrix is the same as the covariance one. These matrices denoted by Σ will be generated 

to be symmetric and positive semi-definitive and presented in Appendix A. Further, correlations 

among the regressors shall be as small as possible to avoid the multicollinearity problem. Having 

generated the data, the continuous outcome variable should be transformed into a binary one 

through a cut-off point (𝜏). Such a cut point should change the proportion of the two categories as 

expressed in Equation (11).  
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𝒀𝒊 = {
𝟏 , 𝒀𝒊

∗ ≥ 𝝉

𝟎 , 𝒀𝒊
∗ < 𝝉 

         (11) 

The first threshold is the median so that the two groups are equally distributed. The second will be 

the 90th decile, so class (1) should represent 10% of the sample, and the rest will belong to class 

(2). This case should reflect the case of outliers or rare phenomena. Moreover, data generation 

would be repeated 10,000 times. To sum up, the data generation process is summarized in Table 1. 

Consequently, in this study, 84 diverse scenarios will be simulated with 840,000 generated 

datasets. Every generated dataset will be split into a training set comprising 75% of the primary 

dataset and a testing set of 25%. Following, the six models of interest will be trained using the 

training set. Thereupon, the fitted and trained models will be used to predict the outcome of the 

data points employing the testing set. Subsequently, the performance of the models will be 

evaluated using a variety of metrics, which will be presented in the subsequent section. 

 

Table 1: Simulation Factors 

Cut-Point = Median Cut-Point = 90th Decile 

Sample Sizes Number of 

Regressors 

Variance-

Covariance 

Matrices 

Sample Sizes Number of 

Regressors 

Variance-

Covariance 

Matrices 

50, 100, 200, 

500, 1000, 

5000 and 

10,000 

3, 5 and 10 Moderate - 

High 

50, 100, 200, 

500, 1000, 

5000 and 

10,000 

3, 5 and 10 Moderate - 

High 

Low Low 

5.2 Performance Measures 

Following the training step, the models’ performance should be evaluated. This can be done using 

the output of the confusion matrix. As demonstrated by 0it is divided into four quadrants where 

True Positives (TP) is the number of cases that were predicted to be in class (1) and were actually 

in that class, False Positives (FP) is the number of observations that were predicted to be in class 

(1) yet, were actually in the other class, False Negatives (FN) is the number of instances that were 

labeled to belong to class (2) but were actually in class (1), and True Negatives (TN) is the number 

of data-points that were predicted to be in class (2) and were actually in that class. 

Table 2: Confusion Matrix Representation  

  Actual 

Event 

(Positive) 

Not-Event 

(Negative) 

P
re

d
ic

te
d

 

Event 

(Positive) 

TP FP 

Not-Event 

(Negative) 

FN TN 
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The confusion matrix can calculate several metrics, such as accuracy, sensitivity, specificity, 

precision, and F1-measure. Accuracy (Acc) is defined as the ratio of the total number of predicted 

observations that are correctly classified, as depicted in Equation (12). 

Acc =  
TP+TN

TP+TN+FP+FN
      (12) 

As for Sensitivity (Sens), it is the proportion of occurrences (ones) that a model predicted correctly 

as events. It is also called true positive rate or recall and can be calculated as follows:  

Sens =  
TP

TP+FN
      (13) 

Speaking of Specificity (Spec) as known as true negative rate, it is the proportion of the non-events 

(zeros) that a model predicted correctly as non-events which can be in Equation (14).  

Spec =  
TN

TN+FP
      (14) 

In 1950, Youden provided Youden’s Index (YI) expressed in Equation (15), which measures the 

ability of a classifier to avoid failure (Musa, 2013). The index’s value runs from 0 to 1, with zero 

indicating that the model is ineffective, while 1 implies that it is perfect.  

YI =  Sens − (1 − Spec)      (15) 

Precision (Prec) reflects the percentage of positive predictions that are actually correct. 

Prec =  
TP

TP+FP
      (16) 

In addition to the previously stated measures, there exists one that encompasses both recall and 

precision as follows: 

F − measure =  2 ×
Prec × Sens

Prec +Sens
     (17) 

A common method to compare classification models is the AUC (Fawcett, 2006). For the sake of 

models’ comparison, it may be more appropriate to summarize the information provided by the 

ROC through a single value portraying the models’ performance. This can be achieved through the 

AUC. The value of the AUC will always be in the (0 – 1) range. A value of 0.5 indicates no 

predictive ability, and 1 indicates perfect predictive ability. Hu et al. (2021) mentioned that, 

typically, a model is regarded as excellent if its AUC falls between 0.9 and 1.0. While it is 

considered good if the AUC is between 0.8 and 0.9. Further, a model is judged fair if the AUC falls 

between 0.7 and 0.8. Lastly, a model AUC less than 0.7 is regarded as poor.  

The distinct performance metrics reflect somewhat various tradeoffs in models’ predictions, and it 

is likely for a classification model to perform satisfactorily according to one metric while being 

suboptimal on others. As a result, it is critical to analyze algorithms over a wide range of 

performance metrics (Musa, 2013). Consequently, this study will depend on various performance 

criteria. 

6. Simulation Results 

This section will present the results and findings of the simulation study.  
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6.1 Accuracy Measure-based Results 

This section will compare the models based on their average accuracy across the 10,000 iterations. 

Under the median cut-off, it was revealed that no matter the correlation level, the sample size, or 

the number of predictors, the logit and the probit had the highest accuracy levels in 83% and 92% 

of the scenarios, respectively. As shown in Table 3, in the high correlation scenario coupled with 

3 X’s, when the sample size reached 10,000, the six models achieved almost the same accuracy 

level. Moreover, in all numbers of regressors’ scenarios, as the correlation scale drops to low, all 

models; accuracies fell as well. Yet, the logit and probit are still the best. It was noted that the 

differences in accuracies of the alternative models diminish as the sample size increases. 

Further, it was revealed that the CART accuracy is the worst in 60% of the cases, especially in the 

high correlation and 3, 5, and 10 regressor scenarios, not only in these scenarios but also in the 

low correlation case with 10 covariates. Despite this phenomenon, the results demonstrate that the 

accuracy of the CART algorithm increases as the sample size increases in the high correlation case 

and 3, 5, and 10 regressors scenarios. 

Table 3: Accuracy, Median Cut-off, 3 Regressors 

Row Labels Log 

  

Prob 

  

DA 

  

SVM 

  

CART 

  

KNN 

  High 

50 0.920 0.924 0.899 0.902 0.737 0.875 

100 0.960 0.960 0.940 0.942 0.799 0.924 

200 0.941 0.945 0.900 0.892 0.814 0.886 

500 0.950 0.950 0.932 0.932 0.839 0.904 

1,000 0.939 0.939 0.924 0.929 0.879 0.927 

5,000 0.944 0.944 0.939 0.939 0.910 0.929 

10,000 0.936 0.936 0.935 0.934 0.918 0.928 

Low             

50 0.728 0.729 0.618 0.614 0.566 0.582 

100 0.748 0.748 0.680 0.652 0.607 0.561 

200 0.660 0.660 0.580 0.580 0.660 0.640 

500 0.734 0.742 0.718 0.694 0.613 0.605 

1,000 0.660 0.668 0.624 0.612 0.640 0.572 

5,000 0.643 0.644 0.646 0.639 0.617 0.620 

10,000 0.665 0.666 0.669 0.662 0.652 0.626 

 

On the other side, unlike the CART, the KNN algorithm attained the highest accuracy among all 

models in the low correlation scale with 3 and 5 explanatory variables at the 100-sample size. 

Besides, the most striking observation to emerge from the models’ comparison was that at the 200-

sample size in the 3 X’s and the 5 X’s, the accuracy of the logit decreased at all correlation levels. 

The same superiority of the logit and the probit models under the 90th decile, with them being the 

most accurate in 71% and 76% of the scenarios, respectively. Such outcomes are evident from 

Tables 6-8. As noted in Table 8, the SVM was as accurate as the logit and probit in 10 X’s in the 

high correlation scenario with 100, 1,000 and 10,000 sample sizes, in addition to the low 

correlation scenario with 50, 500, 5,000 and 10,000 sample sizes. 
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Table 4: Accuracy, Median Cut-off, 5 Regressors 

Row Labels Log 

  

Prob 

  

DA 

  

SVM 

  

CART 

  

KNN 

  High 

50 0.896 0.910 0.905 0.913 0.695 0.836 

100 0.971 0.971 0.935 0.946 0.677 0.836 

200 0.810 0.977 0.963 0.975 0.756 0.895 

500 0.999 0.999 0.985 0.982 0.792 0.934 

1,000 0.995 0.774 0.991 0.990 0.838 0.916 

5,000 1.000 1.000 0.986 0.997 0.891 0.951 

10,000 0.999 0.999 0.993 0.997 0.907 0.954 

Low             

50 0.748 0.748 0.642 0.637 0.558 0.599 

100 0.710 0.711 0.701 0.663 0.696 0.554 

200 0.625 0.624 0.586 0.604 0.583 0.562 

500 0.669 0.662 0.622 0.621 0.653 0.621 

1,000 0.720 0.720 0.696 0.696 0.648 0.687 

5,000 0.718 0.720 0.715 0.719 0.690 0.676 

10,000 0.694 0.694 0.690 0.692 0.662 0.670 

 

Table 5: Accuracy, Median Cut-off, 10 Regressors 

Row Labels Log 

  

Prob 

  

DA 

  

SVM 

  

CART 

  

KNN 

  High 

50 0.849 0.863 0.868 0.886 0.542 0.782 

100 0.953 0.979 0.937 0.931 0.708 0.912 

200 0.663 0.961 0.925 0.951 0.760 0.846 

500 0.853 0.853 0.979 0.978 0.766 0.882 

1,000 0.996 0.996 0.970 0.976 0.788 0.890 

5,000 0.999 0.999 0.985 0.997 0.829 0.917 

10,000 1.000 1.000 0.990 0.996 0.854 0.924 

Low             

50 0.776 0.788 0.806 0.797 0.667 0.686 

100 0.908 0.903 0.838 0.862 0.542 0.780 

200 0.960 0.940 0.920 0.920 0.620 0.720 

500 0.895 0.895 0.855 0.855 0.645 0.718 

1,000 0.900 0.900 0.888 0.888 0.680 0.796 

5,000 0.888 0.887 0.883 0.882 0.712 0.828 

10,000 0.901 0.901 0.898 0.901 0.740 0.857 
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Table 6: Accuracy, Ninetieth Decile Cut-off, 3 Regressors 

Row Labels Log 

  

Prob 

  

DA 

  

SVM 

  

CART 

  

KNN 

  High 

50 1.000 1.000 0.917 0.917 0.833 0.833 

100 0.960 0.960 0.920 0.920 0.880 0.920 

200 0.980 0.980 0.980 0.960 0.860 0.980 

500 0.992 0.992 0.960 0.976 0.920 0.952 

1,000 0.996 0.996 0.984 0.992 0.948 0.988 

5,000 0.973 0.973 0.962 0.969 0.952 0.965 

10,000 0.975 0.975 0.956 0.973 0.964 0.970 

Low             

50 0.917 0.917 0.917 0.833 0.917 0.833 

100 0.920 0.920 0.920 0.920 0.880 0.920 

200 0.900 0.900 0.920 0.900 0.940 0.920 

500 0.936 0.936 0.936 0.928 0.896 0.944 

1,000 0.920 0.916 0.908 0.904 0.888 0.908 

5,000 0.901 0.901 0.899 0.900 0.898 0.899 

10,000 0.902 0.902 0.899 0.897 0.909 0.891 

 

Table 7: Accuracy, Ninetieth Decile Cut-off, 5 Regressors 

Row Labels Log 

  

Prob 

  

DA 

  

SVM 

  

CART 

  

KNN 

  High 

50 0.834 0.834 0.917 0.834 0.833 0.833 

100 0.960 0.960 0.920 0.920 0.720 0.960 

200 0.980 1.000 0.960 0.940 0.920 0.920 

500 0.996 0.996 0.956 0.976 0.920 0.940 

1,000 0.950 0.950 0.970 0.990 0.912 0.952 

5,000 1.000 1.000 0.962 0.998 0.942 0.968 

10,000 0.999 0.999 0.968 0.996 0.952 0.976 

Low             

50 1.000 1.000 0.917 0.917 0.833 0.917 

100 0.840 0.840 0.880 0.880 0.880 0.880 

200 0.860 0.880 0.860 0.880 0.920 0.880 

500 0.936 0.936 0.928 0.928 0.920 0.936 

1,000 0.916 0.916 0.908 0.916 0.892 0.892 

5,000 0.911 0.911 0.910 0.904 0.889 0.906 

10,000 0.909 0.908 0.906 0.901 0.893 0.899 
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Table 8: Accuracy, Ninetieth Decile Cut-off, 10 Regressors 

Row Labels Log 

  

Prob 

  

DA 

  

SVM 

  

CART 

  

KNN 

  High 

50 1.000 1.000 1.000 0.917 0.917 0.917 

100 1.000 1.000 1.000 1.000 0.960 0.960 

200 1.000 1.000 0.960 0.960 0.900 0.900 

500 0.992 0.992 0.944 0.976 0.880 0.936 

1,000 0.992 0.992 0.960 0.992 0.920 0.936 

5,000 0.950 0.950 0.968 0.996 0.916 0.947 

10,000 1.000 1.000 0.965 0.997 0.925 0.955 

Low             

50 0.933 0.934 0.867 0.934 0.917 0.933 

100 0.926 0.926 0.889 0.852 0.880 0.852 

200 0.940 0.940 0.920 0.900 0.920 0.880 

500 0.952 0.952 0.944 0.944 0.896 0.928 

1,000 0.964 0.964 0.956 0.948 0.888 0.940 

5,000 0.959 0.959 0.948 0.955 0.897 0.919 

10,000 0.956 0.956 0.947 0.954 0.898 0.925 

6.2 Sensitivity Measure-based Results  

The results and comparison based on the average sensitivity will be discussed in this section. As 

depicted earlier, the sensitivity criterion measures the ability of the classification model to 

determine the positive cases. A sensitivity value of 1 means the model did not classify any 

observation as false negative. That is, no actual positive observation (Y = 1) was predicted as 

being negative (Y = 0). In the extreme case, its 0 value means that the model failed to detect any 

true positive cases while simultaneously committing false negative predictions.  

Under the τ = 0.5 cases and the 3 predictors, the results revealed that the differences in models’ 

accuracy lessen as the sample size upsurges. Besides, CART has the worst sensitivity, followed by 

the KNN. However, the sensitivity of the CART rises as the sample size surges at a high correlation 

level. For the 10 X’s scenarios, the performance of the logit and the probit was not the best among 

other models. Besides, their performance was too volatile. On the other hand, the sensitivity of the 

CART model continued to increase as the sample size rose in the high correlation case. Another 

fundamental note is that the KNN was the only model whose sensitivity did not decrease under the 

40% sensitivity threshold, unlike the other models.   

In the τ = 0.9 case, it is imperative to mention that the six models of the logit, the probit, the DA, 

the SVM, the CART as well as the KNN failed to detect any true positive instances in 27%, 22%, 

43%, 57%, 63% and 52% of the scenarios, respectively, with an average sensitivity of zero. In the 

group of 3 predictors, the logit and the probit methods were the best in the high correlation 

scenario, specifically at small sample sizes from 50 to 500. Likewise, the same models performed  
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best in the low correlation scenario at the low sample sizes. In the low correlation, the KNN 

became comparable to the logit and the probit at the 5,000 and 10,000 sample sizes.  

Regarding the 5 X’s group of scenarios, in the high correlation case with a 50-sample size, the DA 

was the only model that achieved 50% sensitivity. In contrast, all the other models had zero 

sensitivity. At the same time, the logit model was the only one to have a value of 33% and 50% for 

the sensitivity in the 50 and 100 sample sizes, respectively. Contrary to the previous results, in the 

low correlation case, with a 50-sample size, a value of 1 was obtained by the logit and the probit. 

In the 10 X’s case, at the high correlation with a sample size of 50, the probit model performed 

better than its logit counterparts with a 1 sensitivity value of the first compared to a 0 value for the 

latter. Moreover, at sample sizes of 5,000 and 10,000, the SVM became comparable with its logit 

and probit counterparts. It further beat them in the 10,000-sample size. In the low correlation case, 

the performance of the logit and the probit was the best across all sample sizes.  

6.3 AUC Measure-based Results 

The AUC represents the overall quality of the model’s predictions or its discrimination power. The 

results of the AUC measure will be discussed in this section and portrayed in Table 9 to Table 14. 

The AUC outcomes reveal that regardless of the cut point, the correlation level, the number of 

regressors, or the sample size, the logit, probit, DA, SVM, CART, and KNN achieved an AUC of 

1 or near 1 (0.99) thus excellent discriminatory performance in almost 15%, 14%, 3%, 8%, 0 and 

0 of the total number of cases, respectively. Specifically, under the median cut-off, they attained 

AUC values higher than the 0.7 threshold in 54%, 55.5%, 49%, 46%, 27%, and 43% of those 

cases.  

In the 3 regressors sample with a high correlation, the six models had good to excellent 

discriminatory performance for all sample sizes. Such a finding can be seen in Table 9. In the low 

correlation scenarios, the results indicated that the only fairly performing models are the logit and 

probit models in the scenarios of the 50, 100, and 500 sample sizes. In addition, the DA and the 

SVM performed reasonably well at 500 data sizes.  

Comparatively, it is noted from Table 10 that the performance of the six models improved in the 

high correlation scenario when the number of covariates increased to 5, except for the CART. That 

is, the performance of the CART was better in the 3-X’s case. Furthermore, it could be seen that 

under the low correlation scenario and the sample sizes -1,000, 5,000, and 10,000, all the fitted 

models performed better when the number of regressors changed to 5.  

In the 10 X scenarios – Table 11, under the high correlation, all models’ performance was good to 

excellent under all sample sizes except the CART. It showed poor performance from sample sizes 

50 through 200, then its performance has enhanced. Likewise, in the low correlation level, the 

same trend holds, yet the respective performance of the models decayed from being fair to good. 

Additionally, the CART did not deliver any performance at all sample sizes except at the 10,000-

sample size.  
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Table 9: AUC, Median Cut-off, 3 Regressors 

Row Labels Log 

  

Prob 

  

DA 

  

SVM 

  

CART 

  

KNN 

  High 

50 0.920 0.924 0.899 0.902 0.739 0.875 

100 0.960 0.960 0.940 0.942 0.799 0.924 

200 0.941 0.945 0.900 0.892 0.814 0.886 

500 0.950 0.950 0.932 0.932 0.839 0.904 

1,000 0.939 0.939 0.924 0.929 0.879 0.927 

5,000 0.944 0.944 0.938 0.939 0.910 0.929 

10,000 0.936 0.936 0.935 0.934 0.918 0.928 

Low             

50 0.728 0.729 0.641 0.639 0.606 0.619 

100 0.748 0.748 0.656 0.652 0.616 0.561 

200 0.660 0.660 0.580 0.580 0.660 0.640 

500 0.734 0.742 0.702 0.694 0.613 0.605 

1,000 0.660 0.668 0.624 0.612 0.640 0.572 

5,000 0.643 0.644 0.640 0.639 0.617 0.620 

10,000 0.665 0.666 0.663 0.662 0.652 0.626 

 

Speaking about the 90th decile, at the 3 covariates case -plotted in Table 12- and at the high 

correlation level and the 50-sample size, the logit, the probit, the DA, and the SVM attained an 

average AUC above 0.7. Notably, the logit and the probit had perfect discrimination with a 1 AUC 

value. At size 100, only the logit and the probit attained almost an AUC value of 1, while all other 

models’ AUC was at 0.5 and the CART AUC was less than 0.5.  

Table 10: AUC, Median Cut-off, 5 Regressors 

Row Labels Log 

  

Prob 

  

DA 

  

SVM 

  

CART 

  

KNN 

  High 

50 0.896 0.910 0.905 0.913 0.700 0.836 

100 0.971 0.971 0.935 0.946 0.677 0.836 

200 0.810 0.977 0.956 0.975 0.756 0.895 

500 0.999 0.999 0.985 0.982 0.792 0.934 

1,000 0.995 0.774 0.991 0.990 0.838 0.916 

5,000 1.000 1.000 0.986 0.997 0.891 0.951 

10,000 0.999 0.999 0.993 0.997 0.907 0.954 

Low             

50 0.748 0.748 0.659 0.654 0.601 0.627 

100 0.710 0.711 0.701 0.663 0.696 0.554 

200 0.625 0.624 0.586 0.604 0.583 0.562 

500 0.669 0.662 0.622 0.621 0.653 0.621 

1,000 0.720 0.720 0.696 0.696 0.648 0.687 

5,000 0.718 0.720 0.715 0.719 0.690 0.676 

10,000 0.694 0.694 0.690 0.692 0.662 0.670 
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Table 11: AUC, Median Cut-off, 10 Regressors 

Row Labels Log 

  

Prob 

  

DA 

  

SVM 

  

CART 

  

KNN 

  High 

50 0.849 0.863 0.869 0.886 0.622 0.783 

100 0.953 0.979 0.937 0.931 0.671 0.912 

200 0.663 0.961 0.925 0.951 0.666 0.846 

500 0.853 0.853 0.979 0.978 0.725 0.882 

1,000 0.996 0.996 0.970 0.976 0.722 0.890 

5,000 0.999 0.999 0.985 0.997 0.779 0.917 

10,000 1.000 1.000 0.990 0.996 0.788 0.924 

Low             

50 0.776 0.789 0.806 0.798 0.667 0.691 

100 0.908 0.903 0.838 0.862 0.542 0.780 

200 0.960 0.940 0.920 0.920 0.620 0.720 

500 0.895 0.895 0.855 0.855 0.645 0.718 

1,000 0.900 0.900 0.888 0.888 0.680 0.796 

5,000 0.888 0.887 0.883 0.882 0.712 0.828 

10,000 0.901 0.901 0.898 0.901 0.740 0.857 

Table 12: AUC, Ninetieth Decile Cut-off, 3 Regressors 

Row Labels Log 

  

Prob 

  

DA 

  

SVM 

  

CART 

  

KNN 

  High 

50 1.000 1.000 0.750 0.750 0.500 0.500 

100 0.978 0.978 0.500 0.500 0.478 0.500 

200 0.989 0.989 0.900 0.889 0.561 0.989 

500 0.996 0.996 0.792 0.875 0.731 0.750 

1,000 0.977 0.977 0.909 0.954 0.779 0.932 

5,000 0.917 0.916 0.823 0.912 0.806 0.891 

10,000 0.938 0.930 0.796 0.909 0.898 0.895 

Low             

50 0.950 0.950 0.750 0.500 0.500 0.500 

100 0.500 0.500 0.500 0.500 0.500 0.500 

200 0.500 0.589 0.600 0.500 0.500 0.600 

500 0.658 0.658 0.556 0.500 0.500 0.611 

1,000 0.658 0.656 0.539 0.500 0.496 0.539 

5,000 0.529 0.513 0.512 0.500 0.500 0.533 

10,000 0.541 0.541 0.517 0.500 0.500 0.529 

 

Evidently, the differences between models’ AUC values decrease as the sample size rises. Further, 

from the 500 to 10,000 sample size all the models’ AUCs were above the 0.7 threshold, indicating 

their discriminatory power increases when the sample size rise. At the low correlation level, sample 

size 50, the three statistical models yielded an average AUC of more than 0.7, whilst all ML  



Simulation-Based Assessment of Classification Methods 

110 

 

algorithms AUC stood at 0.5. Concerning the 5 X’s set of data, it is revealed in Table 13 that at 

sample size 50 generated from the high correlation scenario, only the DA performed well with an 

AUC of 0.75. Furthermore, from a 500 sample size, the AUC value of all the fitted models was 

higher than 0.7. Hence, their performance is enhanced with a growing sample size. At the 5,000 

and 10,000 sizes, the logit, probit, and SVM attained a 1 AUC. 

Regarding the low correlation state, at the 50 size, only the logit and the probit models’ AUC were 

1. Otherwise, all the models performed poorly. According to Table 14, depicting 10 predictors, at 

the high correlation level and all sample sizes, the logit, probit, DA, and SVM performed fairly 

with AUC higher than 0.7. An exception at the 50-sample size, the SVM AUC dropped. Moreover, 

the logit and probit AUC values stood at almost 1 across all sample sizes except 5,000.  

In conclusion, when the binary response variable was balanced -under the median cut-point- the 

discrimination power of the six models, especially for the low correlation scenarios, was higher 

than their counterparts when the data became more imbalanced (90th decile cut-offs). Furthermore, 

the discrimination performance was the highest at the median cut-off, followed by the 90th decile.  

Table 13: AUC, Ninetieth Decile Cut-off, 5 Regressors 

Row Labels Log 

  

Prob 

  

DA 

  

SVM 

  

CART 

  

KNN 

  High 

50 0.501 0.501 0.751 0.501 0.500 0.500 

100 0.978 0.978 0.957 0.957 0.530 0.978 

200 0.989 1.000 0.800 0.878 0.489 0.600 

500 0.983 0.984 0.812 0.896 0.752 0.777 

1,000 0.750 0.750 0.807 0.943 0.678 0.731 

5,000 0.999 0.999 0.812 0.992 0.811 0.864 

10,000 0.997 0.998 0.834 0.994 0.838 0.896 

Low             

50 1.000 1.000 0.500 0.500 0.500 0.500 

100 0.477 0.477 0.500 0.500 0.500 0.500 

200 0.561 0.644 0.489 0.500 0.500 0.500 

500 0.658 0.658 0.551 0.500 0.500 0.556 

1,000 0.522 0.522 0.517 0.500 0.549 0.487 

5,000 0.545 0.545 0.559 0.500 0.531 0.542 

10,000 0.571 0.565 0.553 0.500 0.562 0.544 

6.4 Youden Index-based Results 

A zero value for Youden’s index indicates that the model yields the same proportion of positive 

cases for both the positive and the negative groups; hence, the model is useless. A value of 1 no 

false positives or false negatives, i.e., the model is perfect. Upon analyzing the resulting values of 

the YI presented in Appendix B, it revealed the same patterns uncovered through the AUC. The 

most surprising finding is that the CART and the KNN delivered high classification performance 

only once.  
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Table 14: AUC, Ninetieth Decile Cut-off, 10 Regressors 

Row Labels Log 

  

Prob 

  

DA 

  

SVM 

  

CART 

  

KNN 

  High 

50 1.000 1.000 1.000 0.500 0.500 0.500 

100 1.000 1.000 1.000 1.000 0.500 0.500 

200 1.000 1.000 0.800 0.800 0.500 0.500 

500 0.979 0.979 0.751 0.895 0.547 0.744 

1,000 0.975 0.975 0.773 0.975 0.607 0.636 

5,000 0.749 0.749 0.844 0.991 0.688 0.773 

10,000 0.999 0.999 0.825 0.990 0.721 0.796 

Low             

50 0.500 0.502 0.464 0.502 0.500 0.500 

100 0.957 0.957 0.728 0.707 0.478 0.500 

200 0.750 0.750 0.667 0.655 0.614 0.500 

500 0.817 0.786 0.750 0.781 0.704 0.679 

1,000 0.777 0.777 0.744 0.768 0.636 0.589 

5,000 0.854 0.865 0.763 0.838 0.558 0.631 

10,000 0.851 0.851 0.764 0.844 0.585 0.656 

7. Real Data Application 

Extending this analysis to real data is crucial to ensure the findings’ generalizability. Real-world 

data often exhibits complexities, noise, and variations that may not be fully captured in simulated 

datasets. By applying these classification techniques to real data, one can assess their effectiveness 

in handling the intricacies and uncertainties in practical scenarios. The Pima Indian Diabetes 

dataset will be utilized. It is originally from the US National Institute of Diabetes and Digestive 

and Kidney Diseases. The dataset objective is to diagnostically predict whether an individual has 

diabetes based on specific diagnostic measurements included in the dataset. The data was retrieved 

from R software using the command “data(PimaIndiansDiabetes)” under the mlbench (version 

2.1-3.1) package1. 

The data consists of 768 females who are 21 years or more of Pima Indian heritage and living near 

Phoenix, Arizona. The independent variables are 8, including the number of pregnancies the 

female has had, their BMI, age, insulin, glucose, and pressure levels, among others. Their 

descriptive statistics in terms of mean, standard deviation, minimum, and maximum are reported 

in Table 15. 

In this dataset, the predictand indicates that the diabetes test result is either negative or positive. 

The regressand contains 65% of the observations belonging to the negative group, while 35% are 

classified as positive. This case can be compared to the case of the 0.75 cut point. Since the data 

contains 8 regressors, two scenarios will be considered: one with 3 predictors and the other with 5 

covariates. The three variables that were chosen to be used as covariates are glucose (plasma  

 
1 In addition to the R command, the dataset is available through Kaggle (https://www.kaggle.com/uciml/pima-indians-diabetes-database) and 

is available via a CC0: Public Domain License. 

https://www.kaggle.com/uciml/pima-indians-diabetes-database
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glucose concentration), pressure (diastolic blood pressure), and triceps (triceps skin fold 

thickness). Regarding the 5-regressors case, the same three variables were employed in addition 

to mass (body mass index) and pedigree (diabetes pedigree function). 

Table 15: Descriptive Statistics of the Diabetes Dataset 

Variable
     Stat Mean S.D Minimum Maximum Skewness Kurtosis 

Pregnant 3.845 3.370 0 17 0.902 0.159 

Glucose 120.895 31.973 0 199 0.174 0.641 

Pressure 69.105 19.356 0 122 -1.844 5.180 

Triceps 20.536 15.952 0 99 0.109 -0.520 

Insulin 79.799 115.244 0 846 2.272 7.214 

Mass 31.993 7.884 0 67.1 -0.429 3.290 

Pedigree 0.472 0.331 0.078 2.42 1.920 5.595 

Age 33.241 11.760 21 81 1.130 0.643 

Regarding the analysis process, the same procedures followed in the simulation study will be 

pursued regarding the data split into a 75% training set and a 25% testing set. Following, the six 

models will be trained using the training set. Subsequently, the fitted and trained models will be 

used to predict the outcome of the data points in the testing set.  

Finally, the performance of the models will be evaluated using performance metrics such as 

accuracy, sensitivity, specificity, precision, F1, AUC, and YI. These measures will be reported in 

Figure 1 and Figure 2 for the 3 and 5-regressors cases, respectively. Such figures portray the 

performance of the 6 methods across the four dimensions of evaluation measures stated earlier. 

Hence, the resulting shape should be a four-dimensional radar plot; each axis represents one 

performance measure, forming a closed polygon. To enumerate, the area under this resulting 

polygon can be interpreted as an overall performance score. A larger area would indicate better 

performance or higher proficiency across the four dimensions, while a smaller area may suggest 

weakness or lower performance. Additionally, the resulting values are depicted in Tables 16 and 

17. 

The resulting values refer to the logit regression model, followed by the probit regression model, 

being the best-predicting models in the two cases. This conclusion resembles the outcome of the 

simulation study. 

 

Table 16: Performance Measures, 3 Xs, Diabetes Dataset 

Model          Measure Acc Sens Spec Prec F1 AUC YI Index 

Log 0.792 0.606 0.889 0.741 0.667 0.747 0.495 1.338 

Prob 0.786 0.606 0.881 0.727 0.661 0.744 0.487 1.313 

DA 0.76 0.5 0.897 0.717 0.589 0.698 0.397 1.124 

SVM 0.766 0.485 0.913 0.744 0.587 0.699 0.398 1.141 

CART 0.740 0.424 0.905 0.700 0.528 0.665 0.329 0.980 

KNN 0.750 0.455 0.905 0.714 0.556 0.68 0.36 1.048 
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Figure 1: Performance Measures, 3 Xs, Diabetes Dataset 

 

Figure 2: Performance Measures, 5 Xs, Diabetes Dataset 

Table 17: Performance Measures, 5 Xs, Diabetes Dataset 

Model          Measure Acc Sens Spec Prec F1 AUC YI Index 

Log 0.818 0.652 0.905 0.782 0.711 0.778 0.557 1.495 

Prob 0.813 0.652 0.897 0.768 0.705 0.774 0.549 1.468 

DA 0.807 0.591 0.921 0.796 0.678 0.756 0.512 1.408 

SVM 0.807 0.591 0.921 0.796 0.678 0.756 0.512 1.408 

CART 0.724 0.591 0.794 0.600 0.595 0.692 0.385 1.045 

KNN 0.760 0.455 0.921 0.750 0.566 0.688 0.376 1.098 

8. Discussion and conclusion 

This section allows the researcher to summarize and discuss the study’s findings. Overall, the well-

grounded, theory-based models of the logit regression as well as the probit regression resulted in 

fair -(AUC≥ 0.7)- to perfect -(AUC=1)- classification performance in about 52% and 53% of the  
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whole set of 84 simulated scenarios, respectively. The DA followed them by 46%, then the SVM, 

the KNN, and the CART in descending order. Likewise, the two models yielded the most accurate 

predictions in 78.5% and 83.6% of the simulated datasets. Then, the SVM, the DA, the KNN, and 

the CART followed. At the high correlation level with the 90th decile cut-point, the SVM algorithm 

becomes the best at the sample sizes of 1,000, 5,000, and 10,000. As the number of regressors 

increases from 3 through 10, the SVM classifier’s performance improves at the high level of 

correlation. As the distribution of the two groups of the response variable becomes more 

imbalanced, the SVM -along with the logit and the probit models- was the only model that did not 

suffer. 

In order to conclude the results of the study, Table 18 provides insights regarding the best-

performing model in each scenario according to the number of regressors, the sample size, and the 

cut-off point. These findings are based on the most critical performance measures in the study, for 

instance, the accuracy, sensitivity, and the AUC. The boldface cells refer to the cases where the 

same model/s excelled according to the three performance criteria.  

Further, Fig. 3 portrays the performance of the 6 methods across the four dimensions of evaluation 

measures stated earlier. Hence, the resulting shape should be a four-dimensional radar plot 

comprising an overall index similar to the one calculated and illustrated in Section 7, where each 

axis represents one performance measure, forming a closed polygon.  

  

Figure 3: Average Measures, all Scenarios  
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Table 18: Results Summary Across All Scenarios 

Xs N 0.5 0.9 

Acc Sen AUC Acc Sen AUC 

3 50 Prob Log-Prob-

DA 

Log-Prob 

100 Log-Prob Log-Prob 

200 Log-Prob Log Log-Prob KNN Prob KNN 

500 Prob Log Prob Log-Prob 

1,000 Prob Log Prob Log Log-Prob 

5,000 Log-Prob SVM Log-Prob Log-Prob Log 

10,000 DA Log Log-Prob Log-Prob Log 

5 50 Prob Log 

100 Log-Prob KNN All but 

CART 

KNN 

200 Prob Prob 

500 Log Prob Log Log-Prob 

1,000 Log SVM 

5,000 Log-Prob Log Prob Log-Prob 

10,000 Log-Prob Prob Log-Prob Log-Prob Log 

10 50 Prob SVM SVM Prob 

100 Prob Log-Prob 

200 Prob Prob 

500 DA-SVM DA Log-Prob Prob Log-

Prob 

1,000 Log-Prob SVM Log-Prob Prob Log-Prob 

5,000 Log-Prob Prob Log-Prob Log-Prob Prob Prob 

10,000 Log-Prob SVM Log-Prob-

SVM 

SVM 

 

Generally, the performance of the KNN algorithm is always superior to its CART counterpart. In 

the most imbalanced dependent variable distribution scenario, the KNN was revealed to be the 

best-discriminating classifier among all others under the high correlation level coupled with 3X’s 

and 5X’s at sample sizes of 200 and 100, respectively. At the low correlation level, all models’ 

performance significantly improves as the number of regressors rises. In the high correlation case, 

under all regressand distributions, the CART performance deteriorates as the number of predictors 

grows. By contrast, its performance is enhanced at the low correlation level with the rising number 

of predictors. In the high correlation situation, under all dependent variable distributions, the KNN 

performance worsens as the number of predictors upsurges. By way of contrast, at the low 

correlation level, its performance improves with increasing covariates.  
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Along with the logit and the probit, the DA was the sole significantly classifying model at the 

sample size 50 with low correlation, 3X’s, and 0.9 cut-point. At the cut-point of the ninetieth decile, 

the DA was the only model that attained a fair classification power among all other models at the 

50-sample size, 5-covariates, and high correlation level, with an AUC value larger than 0.7.  

In most scenarios, the SVM resulted in a classification performance similar to the DA. However, 

there were some anomalies where one excelled, including: 

• At the 0.9 cut-off, 3 X’s, large sample sizes of 500 up to 10,000, and a high correlation 

level, the SVM’s classification performance was superior to the DA. 

• The DA performed better than the SVM with an AUC of 1 at the 0.9 cut-off, 10 X’s, sample 

size of 50, and high level of correlation. 

• The SVM performance was way superior to the DA at the 0.9 cut-off, 10 X’s, large sample 

sizes of 500 up to 10,000, and high level of correlation. Similarly, in the low correlation 

case with sample sizes of 5,000 and 10,000. 

Referring to the research questions, upon conducting this study, it was revealed that analyzing the 

same dataset by the selected models did not result in the same classification performance. The 

logistic and the probit regressions were the best-fit models in most simulated scenarios. Further, 

the application of ML algorithms did not enhance the predictive accuracy at the expense of classic 

statistical models, as claimed by other studies. Instead, the traditional statistical models exhibited 

better performance than classification models. Moreover, the probit model proved to be as 

excellent as the logit model, if not better than it. Hence, it would be recommended that future 

studies include it compared to the various ML techniques besides the logistic model. However, 

machine learning techniques, with their ability to automatically learn from data and discern 

complex patterns, have proven invaluable in many big data applications. For instance, deep 

learning models have achieved unprecedented accuracy in image recognition tasks by learning 

hierarchical representations directly from pixel data, thereby bypassing the need for manual feature 

engineering, which is often required in traditional statistical approaches. 

After conducting a simulation to compare statistical models with ML algorithms, several possible 

future avenues and directions of work can be explored, such as expanding the study by including 

other ML algorithms, such as neural networks, naive Bayes, or random forests. Further, a thorough 

hyperparameter tuning for each model is performed to optimize their performance. Utilize 

techniques like random search or Bayesian optimization. Moreover, investigate the interpretability 

and explainability of the models on real data sets; hence, the regressors are meaningful. While 

machine learning models can be alternatives to traditional statistical models, they are sometimes 

seen as “black boxes.” Furthermore, it is essential to depart from the normality assumption of the 

regressors in order to check the performance of the six models. Hence, data should be generated 

using other distributions. By pursuing these potential future works, researchers can further enhance 

the understanding of the evaluated models, explore their performance in real-world scenarios, and 

uncover opportunities for improving their accuracy, efficiency, and interpretability. 
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Appendix A: Variance-Covariance Matrices 

 The 3-Regressors Matrices 

Given below are the resulting 4×4 matrices to be utilized in the cases involving 3 regressors along with one 

regressand. The matrices are provided in the order of moderate to high -Σ𝑀−𝐻, and low -Σ𝐿, respectively. 

[
 
 
 
 
 
 
 
 

1.000 0.605 −0.623 0.719

0.605 1.000 −0.119  0.184

−0.623 −0.119 1.000 −0.182

  0.719 0.184 −0.182 1.000 ]
 
 
 
 
 
 
 
 

        

[
 
 
 
 
 
 
 
 

1.000 0.349 −0.291 0.207

0.349 1.000 −0.060 −0.028 

−0.291 −0.060 1.000 −0.064

0.207 −0.028 −0.064 1.000 ]
 
 
 
 
 
 
 
 

 

 

 The 5-Regressors Matrices 

Given below are the resulting 6×6 matrices to be utilized in the cases involving 5 regressors along with one 

regressand. The matrices are provided in the order of moderate to high -Σ𝑀−𝐻, and low -Σ𝐿, respectively. 

[
 
 
 
 
 
 
 
 
 
 
 
 
 

1.000 0.691 −0.397 −0.413 0.593 0.595

0.691 1.000 0.018 0.170 0.233 0.171

−0.397 0.018 1.000 −0.218 0.232 −0.263

−0.413 0.170 −0.218 1.000 −0.281 −0.294

0.593 0.233 0.232 −0.281 1.000 0.287

0.595 0.171 −0.263 −0.294 0.287 1.000 ]
 
 
 
 
 
 
 
 
 
 
 
 
 

   

[
 
 
 
 
 
 
 
 
 
 
 
 
 

1.000 0.254 0.313 −0.237 −0.234 0.309

0.254 1.000 −0.049 −0.091 0.002 0.091

0.313 −0.049 1.000 −0.049 −0.034 −0.099

−0.237 −0.091 −0.049 1.000 −0.015 0.089

−0.234 0.002 −0.034 −0.015 1.000 −0.060

0.309 0.091 −0.099 0.089 −0.060 1.000 ]
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 The 10-Regressors Matrices 

Given below are the resulting 11×11 matrices to be utilized in the cases involving 10 regressors along with 

one regressand. The matrices are provided in the order of moderate to high -Σ𝑀−𝐻, and low -Σ𝐿, 

respectively. 

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1.000 0.298 −0.445−0.364−0.495 0.497 0.508 0.544 0.477 0.516 0.463

0.298 1.000 −0.364 0.120 −0.099 0.086 0.146 0.282 −0.353−0.313 0.360

−0.445−0.364 1.000 0.240 0.342 0.145 0.221 −0.067 0.292 −0.278−0.276

−0.364 0.120 0.240 1.000 −0.315 0.224 −0.125−0.343 0.120 −0.324 0.335

−0.495−0.099 0.342 −0.315 1.000 −0.356−0.078−0.292−0.374−0.296−0.316

0.497 0.086 0.145 0.224 −0.356 1.000 −0.114 0.224 0.405 −0.236−0.067

0.508 0.146 0.221 −0.125−0.078−0.114 1.000 0.267 0.255 0.284 0.411

0.544 0.282 −0.067−0.343−0.292 0.224 0.267 1.000 −0.248 0.385 0.191

0.477 −0.353 0.292 0.120 −0.374 0.405 0.255 −0.248 1.000 0.267 −0.049

0.516 −0.313−0.278−0.324−0.296−0.236 0.284 0.385 0.267 1.000 0.083

0.463 0.360 −0.276 0.335 −0.316−0.067 0.411 0.191 −0.049 0.083 1.000 ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1.000 0.312 0.374 0.239 0.213 −0.247−0.217−0.289−0.231 0.302 0.304

0.312 1.000 −0.089 0.063 −0.062−0.007−0.021−0.052−0.089−0.069−0.065

0.374 −0.089 1.000 −0.085−0.075 0.021 0.042 0.015 −0.026−0.087 0.027

0.239 0.063 −0.085 1.000 0.088 0.079 −0.054−0.051 0.069 −0.083−0.077

0.213 −0.062−0.075 0.088 1.000 0.062 −0.015 0 0.016 −0.029 0.017

−0.247−0.007 0.021 0.079 0.062 1.000 −0.017−0.031 0.076 0.007 0.049

−0.217−0.021 0.042 −0.054−0.015−0.017 1.000 −0.05 −0.068−0.019 0.058

−0.289−0.052 0.015 −0.051 0 −0.031 −0.05 1.000 −0.046 0.051 −0.079

−0.231−0.089−0.026 0.069 0.016 0.076 −0.068−0.046 1.000 0.052 −0.044

0.302 −0.069−0.087−0.083−0.029 0.007 −0.019 0.051 0.052 1.000 0.021

0.304 −0.065 0.027 −0.077 0.017 0.049 0.058 −0.079−0.044 0.021 1.000 ]
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Appendix B: YI Measure Results 

In this Appendix, the tables of theYI of the six methods as a result of the simulation process are presented.  

Table B1: YI, Median Cut-off, 3 Regressors 

Row Labels Log Prob DA SVM CART KNN 

High 

50 0.839 0.847 0.797 0.803 0.474 0.749 

100 0.920 0.920 0.880 0.883 0.598 0.849 

200 0.882 0.889 0.800 0.784 0.629 0.772 

500 0.900 0.900 0.863 0.864 0.677 0.807 

1,000 0.877 0.877 0.848 0.858 0.758 0.853 

5,000 0.889 0.889 0.876 0.877 0.820 0.858 

10,000 0.872 0.872 0.869 0.868 0.837 0.856 

Low       

50 0.457 0.457 0.236 0.229 0.133 0.164 

100 0.497 0.497 0.313 0.305 0.214 0.121 

200 0.320 0.320 0.160 0.161 0.320 0.280 

500 0.468 0.484 0.403 0.387 0.226 0.210 

1,000 0.320 0.336 0.248 0.224 0.280 0.144 

5,000 0.286 0.288 0.280 0.278 0.234 0.240 

10,000 0.330 0.331 0.326 0.325 0.304 0.252 

 

Table B2: YI, Median Cut-off, 5 Regressors 

Row Labels Log Prob DA SVM CART KNN 

High 

50 0.793 0.820 0.810 0.827 0.389 0.671 

100 0.942 0.942 0.869 0.893 0.355 0.672 

200 0.621 0.953 0.913 0.950 0.512 0.789 

500 0.998 0.998 0.969 0.964 0.583 0.868 

1,000 0.989 0.547 0.983 0.980 0.677 0.832 

5,000 1.000 1.000 0.973 0.994 0.782 0.901 

10,000 0.999 0.999 0.986 0.995 0.814 0.908 

Low       

50 0.496 0.497 0.283 0.274 0.116 0.199 

100 0.421 0.421 0.402 0.326 0.391 0.109 

200 0.250 0.249 0.171 0.208 0.167 0.125 

500 0.339 0.323 0.243 0.243 0.306 0.242 

1,000 0.440 0.440 0.392 0.392 0.296 0.375 

5,000 0.437 0.440 0.430 0.438 0.381 0.352 

10,000 0.388 0.387 0.379 0.383 0.325 0.340 
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Table B3: YI, Median Cut-off, 10 Regressors 

Row Labels Log Prob DA SVM CART KNN 

High 

50 0.698 0.726 0.737 0.772 0.287 0.590 

100 0.907 0.957 0.873 0.861 0.237 0.824 

200 0.326 0.922 0.851 0.901 0.476 0.600 

500 0.707 0.707 0.958 0.956 0.399 0.793 

1,000 0.992 0.992 0.939 0.953 0.537 0.791 

5,000 0.998 0.998 0.969 0.995 0.600 0.851 

10,000 0.999 0.999 0.979 0.993 0.660 0.854 

Low       

50 0.553 0.576 0.611 0.594 0.333 0.372 

100 0.817 0.806 0.676 0.725 0.083 0.561 

200 0.920 0.880 0.840 0.840 0.240 0.440 

500 0.790 0.790 0.710 0.710 0.290 0.435 

1,000 0.800 0.800 0.776 0.776 0.360 0.592 

5,000 0.776 0.774 0.766 0.763 0.424 0.656 

10,000 0.802 0.802 0.795 0.802 0.480 0.714 

Table B4: YI, Ninetieth Decile Cut-off, 3 Regressors 

Row Labels Log Prob DA SVM CART KNN 

High 

50 1.000 1.000 0.500 0.500 0.000 0.000 

100 0.957 0.957 0.000 0.000 -0.043 0.000 

200 0.978 0.978 0.800 0.778 0.121 0.978 

500 0.991 0.991 0.583 0.750 0.461 0.500 

1,000 0.954 0.954 0.818 0.909 0.557 0.863 

5,000 0.833 0.832 0.645 0.823 0.612 0.783 

10,000 0.876 0.860 0.592 0.817 0.797 0.789 

Low       

50 0.900 0.900 0.500 0.000 0.000 0.000 

100 0.000 0.000 0.000 0.000 0.000 0.000 

200 0.000 0.178 0.200 0.000 0.000 0.200 

500 0.316 0.316 0.111 0.000 0.000 0.222 

1,000 0.316 0.311 0.079 0.000 -0.009 0.079 

5,000 0.059 0.027 0.024 0.000 0.000 0.067 

10,000 0.082 0.082 0.034 0.000 0.000 0.059 
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Table B5: YI, Ninetieth Decile Cut-off, 5 Regressors 

Row Labels Log Prob DA SVM CART KNN 

High 

50 0.002 0.002 0.501 0.002 0.000 0.000 

100 0.957 0.957 0.913 0.913 0.060 0.957 

200 0.978 1.000 0.600 0.756 -0.021 0.200 

500 0.967 0.968 0.625 0.792 0.504 0.553 

1,000 0.500 0.500 0.614 0.887 0.356 0.462 

5,000 0.999 0.999 0.625 0.985 0.622 0.728 

10,000 0.994 0.995 0.668 0.989 0.676 0.793 

Low       

50 1.000 1.000 0.000 0.000 0.000 0.000 

100 -0.045 -0.045 0.000 0.000 0.000 0.000 

200 0.121 0.288 -0.023 0.000 0.000 0.000 

500 0.316 0.316 0.102 0.000 0.000 0.111 

1,000 0.043 0.043 0.035 0.000 0.098 -0.026 

5,000 0.090 0.090 0.118 0.000 0.063 0.085 

10,000 0.142 0.130 0.106 0.000 0.123 0.088 

Table B6: YI, Ninetieth Decile Cut-off, 10 Regressors 

Row Labels Log Prob DA SVM CART KNN 

High 

50 1.000 1.000 1.000 0.000 0.000 0.000 

100 1.000 1.000 1.000 1.000 0.000 0.000 

200 1.000 1.000 0.600 0.600 0.000 0.000 

500 0.957 0.957 0.503 0.790 0.093 0.489 

1,000 0.950 0.950 0.545 0.950 0.214 0.273 

5,000 0.497 0.498 0.687 0.982 0.376 0.545 

10,000 0.999 0.999 0.650 0.979 0.441 0.592 

Low       

50 0.000 0.004 -0.071 0.004 0.000 0.000 

100 0.913 0.913 0.457 0.413 -0.043 0.000 

200 0.500 0.500 0.333 0.311 0.228 0.000 

500 0.634 0.571 0.500 0.562 0.408 0.357 

1,000 0.554 0.554 0.487 0.537 0.271 0.179 

5,000 0.708 0.730 0.526 0.677 0.116 0.261 

10,000 0.703 0.702 0.529 0.688 0.171 0.313 

 

 


