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 This paper presents a comprehensive analysis of procedures for the excess 

hazard model. A common issue with hazard models is estimating the overall 

hazard rather than the excess hazard, leading to inaccurate parameter estimates. 

The paper suggests applying various survival models, including the excess 

hazard model and the multilevel excess hazard model, to enhance the accuracy 

and reliability of the results. The primary objective of this study is to estimate 

the excess hazard for both models and conduct a comparative analysis between 

them. Two statistical criteria, Akaike's Information Criterion (AIC) and 

Bayesian Information Criterion (BIC), were utilized to evaluate model accuracy. 

All calculations were performed using the R software system, specifically R 

version 4.2.2. The multilevel excess hazard model demonstrated superior 

performance in terms of AIC and BIC compared to the excess hazard model. 

 

1. Introduction 

Survival analysis is a statistical branch determining the expected duration until an event occurs, 

such as death in biological organisms or failure in mechanical systems. It is also termed reliability 

theory in engineering, duration analysis in economics, and event history analysis in sociology. 

Survival analysis comprises a set of longitudinal methods for analyzing data with time-to-event 

outcomes. These events include death, heart attacks, and product expiration, each representing 

different event types. The Kaplan-Meier estimator is a statistical tool used for estimating survival 

probabilities.  

Additionally, two significant methods in survival analysis are shared frailty models and the Cox 

proportional hazards model (PHM). Shared frailty models introduce random effects at the cluster 

level to address observed heterogeneity among clusters, assuming that individuals within the same 

cluster share identical frailty, thus accounting for the correlation in individual event times. In 

contrast, the Cox PHM employs a regression approach to analyze proportional hazards. (Streib and 

Dehmer, 2019).  

 

The fitting of parametric survival models, which follow a normal distribution with random effects, 

was first introduced by (Prinja et al., 2010). These models were developed to assess overall 

survival. However, when the primary goal of certain studies is to calculate net survival for  
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population comparisons, it implies that the analysis is centered on the likelihood of patients dying 

solely from the disease of interest, as described by (Lepeule et al., 2006). Net survival indicates 

that the event's occurrence is the study's focal point, as noted by (Nelson et al., 2007). Two 

principal frameworks are used to determine net survival: the relative survival setting and the cause-

specific setting. The cause-specific setting necessitates information about the event of interest, 

with all other events being censored, which contrasts with the relative survival setting, as discussed 

by (Rondeau et al., 2012). Net survival is a robust foundation in both settings due to informative 

censoring. According to Crowther and Lambert (2014), informative censoring occurs when 

patients are removed from the risk set in a non-informative manner. In the cause-specific setting, 

where the primary goal is to estimate the hazard of the main disease, patients who die from causes 

unrelated to the main disease are censored and thus removed from the risk set. This implies that 

patients at higher risk of dying from other causes are more likely to be excluded from the risk set. 

The concept of informative censoring in the relative survival setting is more complex because any 

variable affecting both disease-specific and other-cause mortality hazards constitutes informative 

censoring. Goethals et al. (2008) introduced a new estimator to address this within the relative 

survival framework.  

 

The estimation of net survival is unbiased if informative censoring is accounted for. Nonetheless, 

biases related to the data set itself may still occur. In the relative survival setting, bias can arise 

from the lack of comparability between the cohort and the general population, from which 

expected mortality rates are derived, due to unmeasured variables (S) affecting both expected and 

excess hazard rates. Additionally, in the cause-specific setting, bias can result from the 

misclassification of the underlying cause of death (Bower et al., 2016). The remainder of this paper 

is structured as follows: Section 2 presents the model specifications, Section 3 discusses the 

estimation methods, Section 4 provides a numerical analysis, and Section 5 concludes with a 

general discussion and potential extensions of our application. 

2. Model Specification 

2.1 Excess Hazard Model 

The excess hazard model is a regression model utilized to analyze disease registry data for 

estimating net survival, particularly when the disease being studied is the primary cause of death. 

There are several frameworks for analyzing survival data. The first is the overall survival 

framework, where mortality from all causes is analyzed. The second is the cause-specific 

framework, which requires information on various causes of death. The third type is the relative 

survival framework, which applies when information on the cause of death is unavailable. The key 

concept of this framework is to segregate the hazard attributable to other causes of death from the 

hazard associated with the disease of interest. Assuming an additive decomposition of the 

individual hazard function , ℎ(. ), into two components: the first, ℎ𝑜𝑢(. ), is the hazard related to 

other causes of death, and the second, ℎ(. ),  pertains to the hazard from the main cause of death 

under study (Austin, 2017; Jenkins, 2008). Here, 𝜆𝑜𝑡ℎ represents the expected hazard while 𝜆𝑝 

denotes the population hazard, was estimated based on demographic characteristics encapsulated 

in the vector ( Z ) (such as age, sex, etc.) using population life tables. This approach is adopted in 

conjunction with the hazard of mortality from the disease of primary interest in the study 

(Gasparini et al., 2019). 

                                   𝜆(𝑡, 𝑎, 𝑥, 𝑧) = 𝜆+(𝑡. 𝑥) +  𝜆(𝑎 + 𝑡, 𝑧 )                                                                  (1) 
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Where:  

𝒕: The time since diagnosis. 

a: The diagnosis age. 

𝒂 +  𝒕 : The censoring age or death . 

X: The prognostic covariates vector. 

𝒛:  A vector of population characteristics. 

We can define the excess hazard as follows: 

• The logarithm of the baseline excess hazard 𝜆 modeled by a B-spline time function. 

• Non-linearity of covariates effect by introducing an adequate B-spline covariates functions . 

• Non-proportionality is modeled in terms of interaction terms between the covariates and a 

B-spline time function. 

To formulate the three covariates effect, X₁: was a linear proportional effect of the axes hazard 

logarithms. X₂: a continuous variable with a non-linear proportional effect, and X3: were the effects 

of a non-proportional (time-dependent). 

Numerous studies, such as those by (Goungounga, et al., 2023; Eletti, et al., 2022 and Crowther, 

et al., 2019), have engaged in extensive discussions regarding the placement of spline knots in 

survival models. A widely accepted practice for selecting knot locations is to use the percentiles of 

the uncensored survival time distribution. Drawing on prior knowledge, we can define the knots 

accordingly. 

2.2 Multilevel Excess Hazard Models 

Multilevel models address hierarchical structures by introducing a random effect for each cluster, 

thus providing an appropriate theoretical framework for estimating net survival. Clustered data are 

frequently observed in various settings. In the medical field, the analysis of recurrent event data is 

a typical example, where patients may experience the event of primary interest multiple times 

during the follow-up period (Amaral et al., 2024). To account for confounders and incorporate 

non-proportional hazards in covariate effects, the data are analyzed simultaneously, considering 

the hierarchical structure of individuals (Prinja et al., 2010). Often, we analyze the effect of a 

random treatment. First, we introduce some concepts for each individual for  (𝑗, 𝑗 =  1,2. . . . . 𝑛𝑖). 

from cluster ( 𝑖 ) (which could be a geographical unit, with 𝑖, (𝑖 = 1.2. . . 𝐷). Let  𝑡𝑖𝑗represent the 

observed time-to-event, and let 𝛿𝑖𝑗;) be the censoring indicator, which takes the value of one if an 

event occurred and zero if censoring occurred. The model is structured as follows: 

 

                                       𝛿𝑖𝑗 = {
1,            𝑐𝑎𝑠𝑒 𝑜𝑓 𝑒𝑣𝑒𝑛𝑡,
0,   𝑐𝑎𝑠𝑒 𝑜𝑓 𝑐𝑒𝑛𝑠𝑜𝑟𝑖𝑛𝑔.

                                                                          (2) 

We can define the multilevel excess hazard effect model as follows  :-  

                       𝜆(𝑡,  𝑋𝑖𝑗,  𝑍𝑖𝑗 , 𝜔𝑖) =  𝜆+(𝑡,  𝑋𝑖𝑗, )𝑒𝑥𝑝(𝜔𝑖) +  𝜆𝑝(𝑡 + 𝑎,  𝑍𝑖𝑗)                                  (3) 

Where: 

 𝒘𝒊: The cluster level of a random effect. 

 𝒖 =  𝒆𝒙𝒑(𝝎): The shared frailty of assumed distribution. 
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3. Estimation Methods 

To model frailty parameters, various studies have employed a gamma distribution because the 

method of likelihood estimation allows for an approximate expression in this scenario (Belot et 

al., 2023). This approach is particularly feasible in excess hazard models due to the division of the 

total hazard into the excess hazard and the population hazard. Consequently, estimating the 

likelihood in this context necessitates a numerical integration step, also known as quadrature. 

Nonetheless, a gamma distribution can be adapted for excess hazard models using the quadrature 

method. Despite this, the preference for this distribution is often avoided. To streamline the model 

estimation process, alternative distributions, such as the normal distribution for the random effect 

( w ), with a mean of zero and a variance that follows a log-normal distribution, are considered. 

Shared frailty can be estimated through numerical integration. 

3.1 Maximum likelihood estimation 

The estimators of the maximum likelihood are used to get the estimation of excess hazard. 

Suppose a single observation known as (𝑡𝑖𝑗, 𝛿𝑖𝑗) from cluster 𝑖 depended on the random effect 

value, the likelihood can be written as follows : -  

                  𝐿𝑖𝑗
𝑐 (𝛽|𝜔𝑖)  =  (𝜆+(𝑡𝑖𝑗,  𝑋𝑖𝑗, 𝜔𝑖)  +  𝜆𝑝(𝑡𝑖𝑗  +  𝑎,  𝑍𝑖𝑗))𝛿𝑖𝑗  𝑆(𝑡𝑖𝑗,  𝑋𝑖𝑗, 𝜔𝑖).                        (4) 

The parameters of the baseline hazard and the effect of covariates can be re-grouped in one 

vector called 𝛽and 

               𝑆(𝑡𝑖𝑗,  𝑋𝑖𝑗, 𝜔𝑖)  =  𝑒𝑥𝑝((−Λ+(𝑡𝑖𝑗,  𝑋𝑖𝑗, 𝜔𝑖)  − Λ𝑝(𝑡𝑖𝑗  + 𝑎,  𝑍𝑖𝑗)).                                       (5) 

Where: 

 𝚲+ :-Represents the cumulative excess hazard 

 𝚲𝒑:- Population cumulative excess hazard introduced by the general formula:- 

                                                  Λ(𝑡) = ∫ 𝜆(𝑢)𝑑𝑢
𝑡

0

.                                                                                     (6) 

In practice, the latter exponential terms of the previous formula were deleted from the estimation 

process because it does not rely on the estimated parameters. For cluster, 𝑖  the conditional 

likelihood is defined as: 

                                         𝐿𝑖
𝑐(𝛽|𝜔𝑖)  = ∏(𝐿𝑖𝑗

𝑐 (𝛽|𝜔𝑖))                                                                            (7) 

𝑛𝑖

𝑖=1

 

Then, obtaining the effect of marginal likelihood t for cluster 𝑖 by integrating the conditional 

likelihood through the random effect distribution: 

                               𝐿𝑖
𝑀 (𝛽|𝜎) =

1

𝜎√2𝜋
∫ 𝐿𝑖

𝑐(𝛽|𝜔𝑖) exp (
𝜔2

2𝜎2
) 𝑑𝜔

∞

−∞

                                                  (8)  

 The estimation of model parameters (𝛽, 𝜎) using the full log-likelihood function can be written 

as: 

                                  𝑙 (𝛽|𝜎)  = ∑ log (𝐿𝑖
𝑀(𝛽|𝜎))                                                                                 (9)

𝐷

𝑖=1
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The algorithm of this method is as follows (Kim, J. S., 2003):- 

a) Maximize 𝑙(𝛽(𝑘), 𝜆) with respect to 𝜆 to get𝜆(𝑘). 

b) Maximize 𝑙(𝛽, 𝜆(𝑘)) with respect to 𝛽, and let 𝛽(𝑘) be the maximizer at 𝑘 → 𝑘 + 1. 

c) To get the convergence repeat steps (a) and (b). 

3.2  Adaptive Gauss-Hermite quadrature : 

This method calculates the log-likelihood function of generalized linear mixed models. The main 

procedure involves multiplying and integrating the parameter of interest using a carefully chosen 

probability density function, as described by (Kabaila and Ranathunga 2019). Analytical 

evaluation of the full log-likelihood is not feasible because the expression for the integration of 

the cluster-specific marginal likelihood cannot be approximated in a simple form. However, the 

Gauss-Hermite quadrature allows us to estimate these marginal likelihoods by evaluating the 

cluster's specific conditional likelihood function at designated points, known as quadrature nodes. 

For cluster k, we have: 

                              
1

𝜎√2𝜋
∫ 𝐿𝑖

𝑐(𝛽|𝜔𝑖) exp (
𝜔2

2𝜎2
) 𝑑𝜔

∞

−∞

 ∝ ∑ 𝜌𝑖𝐿𝑘
𝑐 (𝛽|𝑎𝑖)                                       (10)

𝑄

𝑖=1

 

Where: 

 𝒂𝒊 : are the nodes. 

𝝆𝒊: are the weights. 

These parameters are determined from the zeros of a polynomial of the Q-th order Hermite. These 

nodes are independent of the conditional likelihood function 𝐿𝑘
𝑐 implying that the locations of the 

nodes may not fully capture the regions of maximal variation in 𝐿𝑘
𝑐 , as expressed in: 

• Integration with low estimation. 

• Using a large node number to improve this estimation. 

Therefore, the main idea of this approximate method is to devise a new quadrature formula 

incorporating these nodes and their associated weights into the integrand by transforming the 

integration. Then, the nodes are rescaled to encompass regions where the integrand varies more. 

To approximate the integral around its nodes, the method relies on the Laplace method and the 

estimation of adaptive Gauss-Hermite quadrature, which corresponds to the standard Laplace 

approximation for integrals of positive functions, as outlined by Jin and Andersson (2020). For a 

small number of quadrature points, adaptive Gauss-Hermite quadrature provides a better 

approximation of the integral. This improvement stems from the transformation of nodes and their 

corresponding weights, which allows for speculating the integral for each cluster's logarithmic first 

and second derivatives, as discussed by Stringer and Bilodeau (2022). 

4. Numerical Analysis  

This study relied on a simulated dataset obtained from an R package. The independent variables 

in the dataset include Age, Depindex, Sex, ID cluster number, Time of follow-up, and vital status. 

The dependent variable is the popmrate variable, representing the population (expected) mortality 

rate at the time of censoring. Descriptions of these variables will be provided in the following:  
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Table 1 presents the simulated dataset obtained from R packages. This dataset comprises 4000 

rows and 8 columns, with each variable having 4000 observations. The analysis of this data relied 

on specific packages such as mexhaz and psych, which were utilized for data analysis. 

Table 1: Descriptive of Variables of Simulated Data Variables 

Variable Description 

Age Age at diagnosis (continuous). 

Depindex Deprivation index (continuous). 

IsexH Sex (0 = Female, 1 = Male). 

Clust ID number of the cluster. 

Vstat Vital status (0 = Alive, 1 = Dead). 

Timesurv Follow-up time (years). 

 

Table 2 presents the descriptive statistics of the quantitative variables. The results indicate that 

depindex has the lowest standard deviation, with a value of 1.18. This suggests that a variable 

exhibits less variation among its observations than the other variables. Following depindex, the 

variable of time survival shows the next lowest standard deviation, followed by the variable of 

age. 

 
Table 2: Descriptive Statistics for Simulated Variables of Quantitative Data 

Variable n Min Max Mean S.D 

Age 4000 30.3 84.96 68.49 13.72 

Depindex 4000 -2.79 2.78 0.02 1.18 

Clust 4000 1 50 25.5 14.43 

Time Survival 4000 0 10 3.61 3.78 

 

Table 3 provides the descriptive statistics of the categorical variables sex and vital status, including 

each variable's frequency, percentage, and cumulative percentage. The previous table revealed that 

the percentage of deaths is higher than the percentage of individuals who are alive. This highlights 

the impact of independent variables on increasing the mortality rate. 

Table 3: Descriptive Statistics for Simulated Data Categorical Variables 

Variable Frequency Percent Valid Percent Cumulative Percent 

IsexH 

Female 2036 50.9 50.9 50.9 

Male 1964 49.1 49.1 100.0 

Total 4000 100.0 100.0 - 

Vstat 

Alive 763 19.1 19.1 19.1 

Dead 3237 80.9 80.9 100.0 

Total 4000 100.0 100.0 - 

 

Table 4 displays the parameter estimates for the excess hazard model. The results indicate that all 

parameters affect the vital status. According to the excess hazard model, the variable with the  
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lowest standard error, implying minimal differences between its units, is the age variable. This 

suggests convergence among ages in terms of their impact on vital status. 

Table 4: The Estimation of Excess Hazard Model Parameters 

Parameter Estimate StdErr z.value p.value 

logLambda -4.6772 0.1365 -34.3 <0.01 

logRho -0.4394 0.0166 -26.5 <0.01 

Age 0.0470 0.0018 26 <0.01 

Depindex 0.0936 0.0166 5.64 <0.01 

IsexH 1.0054 0.0423 23.8 <0.01 

 

Table 5 describes the estimation of multilevel excess hazard model parameters. The previous table 

showed that explanatory and response variables had a significant relationship. Therefore, all 

explanatory variables had an influential effect on the rate of mortality.  

Table 5: The Estimation of Multilevel Excess Hazard Model Parameters 

Parameter Estimate StdErr z.value p.value 

logLambda -4.7564 0.1431 -33.2348 <0.01 

logRho -0.4236 0.0166 -25.448 <0.0165 

Age 0.0478 0.0018 25.9311 <0.01 

depindex 0.0944 0.0312 3.0216 <0.01 

IsexH 1.0326 0.0434 23.8071 <0.01 

Clust -1.5292 0.1462 -10.4585 <0.01 

 

Table 6 presents the efficiency criteria of the proposed models. The results indicate that the best-

performing model, based on these criteria, is the multilevel excess hazard model with 6 degrees of 

freedom and 50 clusters. The log-likelihood value for this model is -5739.7. These findings provide 

evidence of a negative relationship between the independent variables and the risk of death.  

Table 6: Efficiency Criteria 

Model log-likelihood Df AIC BIC 

Excess hazard model -5765.1 5 11540.18 11571.65 

Multilevel excess hazard model -5739.7 6 11489.43 11520.9 

 

 

Table 7 presents each model's parameter estimates at different sample sizes, along with the 

standard errors of the parameters and comparison criteria used to determine the best model. From 

the analysis of this table, several key findings emerge: 
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First:  There exists a negative relationship between the explanatory variables and the dependent 

variable. 

Second:  The standard error of log lambda for the multilevel excess hazard model is greater than 

that of the excess hazard model. This is likely due to the multilevel model's differences between 

levels and clusters. 

Third: Regarding efficiency criteria, the best model fit is observed for the multilevel excess hazard 

model at a sample size of n=25.                                                               

 Table 7: Bootstrap Estimation Method and Criteria of Comparison between Models. 

Model  Parameter n=25 n=50 n=100 n=200 

Excess hazard model 

log lambda 

-5.337 -5.0 -4.8 -4.7 

Multilevel  excess hazard model -6.503 -5.3 -5.0 -4.9 

   n=25 n=50 n=100 n=200 

Excess hazard model Std. error log lambda 

 
 

2.211 1.3 0.9 0.6 

Multilevel  excess hazard model 
 

3.182 1.6 1.0 0.7 

Model Criteria n=25 n=50 n=100 n=200 

Excess hazard model 
AIC 

75.6 148.6 292.3 581.2 

Multilevel  excess hazard model 75.1 148.0 291.5 579.9 

  n=25 n=50 n=100 n=200 

Excess hazard model 
BIC 

81.7 158.2 305.3 597.7 

Multilevel  excess hazard model 81.2 157.6 304.5 596.4 

 

Figure 1 illustrates the estimation of log lambda for both models at various sample sizes (n = 25, 

50, 100, 200). The figure demonstrates that the estimation of log lambda, representing the hazard 

parameter, decreases as the sample size increases. Moreover, the multilevel excess hazard model 

exhibits the greatest rate of decrease in log lambda compared to the excess hazard model. This 

suggests that as the sample size increases, the hazard parameter tends to decrease more rapidly in 

the multilevel excess hazard model. 

 
Figure1: log lambda estimation 

-5.337
-5.0 -4.8 -4.7

-6.503

-5.3
-5.0 -4.9

n=25 n=50 n=100 n=200

Excess hazard model log lambda Multilevel  excess hazard model
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Figure 2 demonstrates that all three shapes exhibit data symmetry, as indicated by the symmetrical 

nature of the box plot. The data values are clustered closely around the median, with no outliers 

present. Additionally, the scatter plot illustrates the close relationship between the variables, 

indicating a strong correlation between them. 

 
Figure 2: Histogram, Scatter plot, and Box plot of clusters. 

Figure 3 displays the standard error of log lambda for both the excess hazard model and the 

multilevel excess hazard model at various sample sizes. The figure reveals slight variations in the 

standard error between the two models, which can be attributed to cluster differences. 

 
Figure 3: Log lamda standard error. 

Figure 4 presents the efficiency criteria of the proposed models at the sample sizes examined in 

this paper. Based on two criteria, it is evident that the multilevel excess hazard model emerged as 

the best model. 
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Figure 4: Efficiency criteria 

Figures 5 and 6 depict the hazard rate at two age levels (30 and 80), corresponding to mid-age and 

final age points, respectively, as these points represent the highest hazard rate. These figures 

demonstrate that as survival time increases, the hazard rate decreases, providing evidence of an 

inverse relationship between the two variables.                                                                                                                                                                                                                                        

 

Figure 5: Excess hazard and multilevel excess hazard at age 30 
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Figure 6: Excess hazard and multilevel excess hazard at age 80. 

5. Conclusion 

In this paper, we introduced two survival analysis models, namely the excess hazard model and 

the multilevel excess hazard model, to estimate the excess hazard (log lambda). These models were 

applied to data from the R program to assess the estimation of this parameter. The model 

parameters were estimated using maximum likelihood and bootstrap estimation methods. 

Additionally, criteria measurements were conducted at different sample sizes (25, 50, 100, and 

200). The multilevel excess hazard model, which included 50 clusters based on real data, was 

utilized in the analysis. The estimation results revealed a negative relationship between the excess 

hazard parameter and survival time. Furthermore, the multilevel excess hazard model's hazard was 

greater than that in the excess hazard model. For efficiency criteria, the multilevel excess hazard 

model emerged as the best model for both criteria, indicating its superior performance in model 

fitting.  
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