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 In this study, two nonparametric estimators of estimating distribution function 

under dual-rank ranked set sampling (DRSS) are discussed and compared. The 

first estimator incorporates the information supported by the relationship 

between ranks of measured sampling items and information from unmeasured 

sampling items. This estimator is constructed through an iterative algorithm. The 

second one depends on using the information generated by a concomitant 

variable. This estimator is derived by the linear interpolation method. Under 

both perfect and imperfect ranking situations, a series of simulation studies are 

carried out, and the proposed estimators are then compared with their 

counterparts using traditional ranked set sampling (RSS). It is concluded that 

the proposed procedures have dramatically better performance than their 

competitors at points in the center of the parent distribution, specifically in the 

case of an appropriate level of ranking quality. Finally, an illustrative example 

using a real dataset is also used to investigate the performance of the proposed 

procedures. 

 

1. Introduction 

Ranked set sampling (RSS) was initially introduced by McIntyre (1952) to increase the precision 

of estimating the average pasture and forage yields. This technique is operated by randomly 

selecting sets of 𝑘 items each from the parent population. Importantly, it is assumed that the actual 

quantification of the sample items is not easy, costly, or time-consuming relative to their ranking. 

The ranking process can be performed by either eye inspection or an auxiliary variable known as 

a concomitant variable, 𝑋, which is affordable, easily obtainable, and has a reasonable correlation 

with the variable under consideration. One can draw a RSS sample of size 𝑛 by getting 𝑘 sets, each 

with 𝑘 sampling items, ranking individually the 𝑘 sets, and selecting the lowest sampling item 

ranked from the first set for actual quantification. However, the second lowest of the sampling 

items was quantified based on the second set. Following the same manner, the selection process is 

performed until the highest-ranked sampling item is exactly considered from the 𝑘𝑡ℎ set of 𝑘 

sampling items. This enables us to get 𝑘-independent measured values. To obtain a larger sample, 

one could repeat this process 𝑚 independent times (cycles). Therefore, one can get 𝑛 = 𝑘𝑚 
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independent measured values. It should be stressed that if the number of measured items varies 

across the 𝑘 sets, RSS is termed unbalanced RSS. Our focus here is on balanced RSS. 

Let 𝑌𝑖(1)𝑗 , 𝑌𝑖(2)𝑗 , … , 𝑌𝑖(𝑘)𝑗 be the order statistics of the 𝑖𝑡ℎ sample (𝑖 = 1,2, … , 𝑘) in the 𝑗𝑡ℎ cycle 

(𝑗 = 1,2, … ,𝑚) drawn from a population of interest with a probability density function (pdf) 𝑓(𝑦) 

and cumulative distribution function (CDF) 𝐹(𝑦). Then, {𝑌𝑖(𝑖)𝑗:   𝑖 = 1,2, … , 𝑘 ;  𝑗 = 1,2, … ,𝑚} is 

a RSS of size 𝑛. It is important to highlight that as long as the sampling items are ranked with free 

errors, then this situation is termed as a perfect ranking situation, and the brackets take a round 

symbol in 𝑌𝑖(𝑖)𝑗 ’s. In contradiction, if it is expected to get error ranks during the ranking 

mechanism, this case is called imperfect ranking, and the brackets will become a square symbol, 

𝑌𝑖[𝑖]𝑗 ’s. 

It is well known that the pdf and the CDF corresponding to 𝑌(𝑖:𝑘) are respectively, given by (see 

David and Nagaraja (2003)): 

𝑓(𝑖:𝑘)(𝑦) =
𝑘!

(𝑖 − 1)! (𝑘 − 𝑖)!
[𝐹(𝑦)]𝑖−1[1 − 𝐹(𝑦)]𝑘−𝑖𝑓(𝑦) = 𝑏𝑖,𝑘−𝑖+1(𝐹(𝑦)), 

and 

𝐹(𝑖:𝑘)(𝑦) =∑(
𝑘

𝑗
) [𝐹(𝑦)]𝑗−1[1 − 𝐹(𝑦)]𝑘−𝑗

𝑘

𝑗=𝑖

= 𝐵𝑖,𝑘−𝑖+1(𝐹(𝑦)), 

where 𝑏𝑎,𝑏(𝑦) and 𝐵𝑎,𝑏(𝑦) are respectively the pdf and the CDF of the Beta distribution with 

parameters 𝑎 and 𝑏 at the point 𝑦.  

Stokes and Sager (1988) first used the empirical distribution function to introduce the CDF 

estimator under RSS given by: 

�̂�𝑅(𝑡) =
1

𝑛
∑∑𝐼(𝑌𝑖(𝑖)𝑗 ≤ 𝑡)

𝑘

𝑖=1

𝑚

𝑗=1

, 

where 𝑡 ∈ ℝ. Additionally, they introduced a rigorous proof indicating that �̂�𝑅(𝑡) leads to more 

efficient population CDF estimates than its counterpart in simple random sample (SRS) design.  

In the same sequel, other studies utilized the missing data approach for improving CDF estimation 

based on RSS. Generally speaking, this approach can be grouped into two categories. The first 

category constructs its procedures by combining the imputed information based on the unmeasured 

units with those supported by the measured items; typically, an iterative algorithm, such as the EM 

algorithm, is adopted for performing this mission. Examples of research in this category are Kvam 

and Samaniego (1994) and Frey and Zhang (2023). On the other hand, the second category of 

research prefers to raise the CDF estimation efficiency by incorporating the concomitant 

variable,𝑋, information, using the linear interpolation method. Zamanzade and Mahdizadeh (2018) 

and Ashour and Abdallah (2020) are famous studies in this category. Motivated by these 
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publications, we sought to extend the work addressed by Kvam and Samaniego (1994) and 

Zamanzade and Mahdizadeh (2018) to a new variation of RSS, recently proposed, known as dual-

rank ranked set sampling (DRRSS). To the best of our knowledge, the problem of CDF estimation 

based on DRRSS using either the unmeasured item information or concomitant variable 

information has not yet been discussed in the literature. 

Several studies have also addressed the efficiency of RSS extensions in estimating different 

population parameters. To name a few of these studies, Göçoğlu and Demirel (2020) examined the 

superiority of various RSS designs for estimating the population proportion. Hassan et al. (2021) 

considered the stress–strength model under median RSS. Abdallah (2023) investigated the 

efficiency of paired RSS in estimating the ROC curve. Al-Saleh and Ahmad (2023) recently 

adopted RSS and some other RSS schemes for estimating the common mean of two normal 

distributions. Zamanzade et al. (2024) addressed the mean residual lifetime under RSS. The rest 

of this work is structured as follows: Section 2 discusses the CDF estimators proposed by Kvam 

and Samaniego (1994) and Zamanzade and Mahdizadeh (2018) in detail. Section 3 explains the 

dual-rank RSS (DRRSS) mechanism and introduces the two proposed CDF estimators under 

DRRSS. The comparison studies of the two proposed procedures for their analogues under perfect 

ranking and imperfect ranking situations are provided in Section 4. Section 5 presents an 

illustrative case study of the two novel estimators. Lastly, Section 6 shows some overall remarks 

and potential guideline points for future studies.  

2. The CDF estimation in RSS using auxiliary information  

Kvam and Samaniego (1994) were the first to introduce a novel idea of estimating 𝐹(𝑡) based on 

RSS using a missing data approach. Their efforts are to use, assuming the perfectness situation, 

the ranking information generated by the measured sampling items for estimating the expected 

count of the unmeasured sampling items less than 𝑡. 

For instance, at a certain 𝑡, if we observed that the sampling item 𝑌𝑖(𝑖)𝑗 actually is less than 𝑡, then 

it is logical to think about that: 

𝑃(𝑌𝑖(𝑙)𝑗 < 𝑡) = 1                                    𝑙 = 1,2… 𝑖 − 1.                                    (1)   

while for the remaining items:  

𝑃(𝑌𝑖(𝑙)𝑗 < 𝑡|𝑌𝑖(𝑙)𝑗 > 𝑌𝑖(𝑖)𝑗) =
∫ 𝑓(𝑦)
𝑡

𝑦𝑖(𝑖)𝑗
𝑑𝑦

∫ 𝑓(𝑦)
∞

𝑦𝑖(𝑖)𝑗
𝑑𝑦

=
𝐹(𝑡) − 𝐹(𝑦𝑖(𝑖)𝑗)

1 − 𝐹(𝑦𝑖(𝑖)𝑗)
      𝑙 = 𝑖 + 1, 𝑖 + 2…𝑘.                           (2)   

Oppositely, if we observed that the sampling item 𝑌𝑖(𝑖)𝑗 actually is greater than 𝑡, then it is logical 

to think about that: 

                               𝑃(𝑌𝑖(𝑙)𝑗 < 𝑡) = 0,                                    𝑙 = 𝑖 + 1, 𝑖 + 2…𝑘.                             (3) 

yet for the remaining items: 
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          𝑃(𝑌𝑖(𝑙)𝑗 < 𝑡|𝑌𝑖(𝑙)𝑗 < 𝑌𝑖(𝑖)𝑗) =
∫ 𝑓(𝑦)
𝑡

−∞
𝑑𝑦

∫ 𝑓(𝑦)
𝑦𝑖(𝑖)𝑗
−∞

𝑑𝑦
=

𝐹(𝑡)

𝐹(𝑦𝑖(𝑖)𝑗)
 ,       𝑙 = 1,2… 𝑖 − 1.                           (4) 

Putting (1 − 4) together, the CDF estimator based on the ranking information generated by the 

measured sampling as well as the unmeasured sampling can be formulated as: 

�̂�𝑅1
∗ (𝑡) =

1

𝑛𝑘
∑∑[(𝑖 + (𝑘 − 𝑖)

𝐹(𝑡) − 𝐹(𝑦𝑖(𝑖)𝑗)

1 − 𝐹(𝑦𝑖(𝑖)𝑗)
) 𝐼(𝑌𝑖(𝑖)𝑗 < 𝑡)] + [(𝑖 − 1) (

𝐹(𝑡)

𝐹(𝑦𝑖(𝑖)𝑗)
) 𝐼(𝑌𝑖(𝑖)𝑗 > 𝑡)]

𝑘

𝑖=1

𝑚

𝑗=1

. 

One can easily observe that �̂�𝑅1
∗ (𝑡) is not itself an estimable function since it simply depends on 

unknown quantities, therefore Kvam and Samaniego (1994) decided to solve this dilemma by 

using EM algorithm, supported by Dempster et al. (1977), whose steps are listed below:  

1- Set 𝑟 = 0.  

2- Estimate the unknown CDFs in �̂�𝑅1
∗ (𝑡) with the estimator based on the empirical distribution 

function proposed by Stokes and Sager (1988), i.e. compute the following equation: 

�̂�𝑅1
∗(𝑟)(𝑡) =

1

𝑛𝑘
∑∑[(𝑖 + (𝑘 − 𝑖)

�̂�𝑅(𝑡) − �̂�𝑅(𝑦𝑖(𝑖)𝑗)

1 − �̂�𝑅(𝑦𝑖(𝑖)𝑗)
) 𝐼(𝑌𝑖(𝑖)𝑗 < 𝑡)] + [(𝑖 − 1)(

�̂�𝑅(𝑡)

�̂�𝑅(𝑦𝑖(𝑖)𝑗)
) 𝐼(𝑌𝑖(𝑖)𝑗 > 𝑡)]

𝑘

𝑖=1

𝑚

𝑗=1

, 

3- Replace 𝑡 in �̂�𝑅1
∗(𝑟)(𝑡) with all the sampling items, i.e. compute the following equation: 

�̂�𝑅1
∗(𝑟)
(𝑦𝑙(𝑙)𝑤) =

1

𝑛𝑘
∑∑[(𝑖 + (𝑘 − 𝑖)

�̂�𝑅(𝑦𝑙(𝑙)𝑤) − �̂�𝑅(𝑦𝑖(𝑖)𝑗)

1 − �̂�𝑅(𝑦𝑖(𝑖)𝑗)
) 𝐼(𝑌𝑖(𝑖)𝑗 < 𝑦𝑙(𝑙)𝑤)]

𝑘

𝑖=1

𝑚

𝑗=1

+ [(𝑖 − 1) (
�̂�𝑅(𝑦𝑙(𝑙)𝑤)

�̂�𝑅(𝑦𝑖(𝑖)𝑗)
) 𝐼(𝑌𝑖(𝑖)𝑗 > 𝑦𝑙(𝑙)𝑤)], 

𝑙 = 1,2, . . 𝑘 and w = 1,2, . . 𝑚.  

4- Set 𝑟 = 𝑟 + 1. 

5- Obtain �̂�𝑅1
∗(𝑟)(𝑡) by using the following recursive equation: 

�̂�𝑅1
∗(𝑟)(𝑡) =

1

𝑛𝑘
∑∑[(𝑖 + (𝑘 − 𝑖)

�̂�𝑅1
∗(𝑟−1)(𝑡) − �̂�𝑅1

∗(𝑟−1)
(𝑦𝑖(𝑖)𝑗)

1 − �̂�𝑅1
∗(𝑟−1)

(𝑦𝑖(𝑖)𝑗)
) 𝐼(𝑌𝑖(𝑖)𝑗 < 𝑡)]

𝑘

𝑖=1

𝑚

𝑗=1

+ [(𝑖 − 1)(
�̂�𝑅1
∗(𝑟−1)(𝑡)

�̂�𝑅1
∗(𝑟−1)

(𝑦𝑖(𝑖)𝑗)
) 𝐼(𝑌𝑖(𝑖)𝑗 > 𝑡)], 

6- Repeat steps (4-5) until the following stopping rule satisfy: 

|�̂�𝑅1
∗(𝑟)(𝑡) − �̂�𝑅1

∗(𝑟−1)(𝑡)| < .001 
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7- Finally, the suggested estimator denoted by �̂�𝑅1(𝑡) given by: 

�̂�𝑅1(𝑡) = �̂�𝑅1
∗(𝑟)(𝑡) 

Kvam and Samaniego (1994) investigated analytically the statistical properties of �̂�𝑅1(𝑡) and 

proved that the suggested algorithm converges to a unique consistent solution as long as the initial 

CDF value used at step 2 in the above algorithm is a consistent estimator. Using a Monte Carlo 

simulation study, they concluded that performing the above algorithm will considerably improve 

the efficiency of CDF estimation under RSS. 

On the other hand, Zamanzade and Mahdizadeh (2018) also preferred to adopt the missing data 

mechanism, however, by taking into account the information supported by the concomitant 

sampling items. Their idea is based on imputing the unmeasured items relevant to the interested 

variable in the light of the corresponding measured items associated with the concomitant variable. 

In order to estimate the CDF under RSS based on missing data mechanism, Zamanzade and 

Mahdizadeh (2018) decided to implement the linear interpolation technique whose steps are given 

by:  

1- Combining 𝑦𝑖(𝑖)𝑗 and their associated sampling items of 𝑥𝑖(𝑖)𝑗 into two new variables 

(𝑦𝑧
∗, 𝑥𝑧

∗  , 𝑧 = 1…𝑛) respectively.  

2- Sorting ascending  (𝑦𝑧
∗, 𝑥𝑧

∗) according to 𝑥∗ items leading to (𝑦[𝑧]
∗ , 𝑥(𝑧)

∗ ). 

3- Compute the isotonized values, see Ozturk (2007), for 𝐼(𝑦[𝑧]
∗ ≤ 𝑡) and retain these values 

in �̂�𝑧
𝑖𝑠𝑜(𝑡). 

4- For each 𝑥𝑙𝑗(𝑖), calculate the corresponding �̂�𝑧
𝑖𝑠𝑜(𝑡) by implementing the linear interpolation 

formula given by: 

�̂�𝑥(𝑡) =

{
 
 

 
 

�̂�𝑧
𝑖𝑠𝑜(𝑡)

�̂�1
𝑖𝑠𝑜(𝑡) 𝑥 ≤ 𝑥(1)

∗

+
�̂�𝑧+1
𝑖𝑠𝑜 (𝑡)−�̂�𝑧

𝑖𝑠𝑜(𝑡)

𝑥(𝑧+1)
∗ −𝑥(𝑧)

∗  [𝑥 − 𝑥(𝑧)
∗ ] 𝑥(𝑧)

∗ ≤ 𝑥 < 𝑥(𝑧+1)
∗    𝑧 = 1…𝑛− 1

�̂�𝑛
𝑖𝑠𝑜(𝑡) 𝑥 ≥ 𝑥(𝑛)

∗

. 

5. Finally, the suggested estimator denoted by �̂�𝑅2(𝑡) given by: 

�̂�𝑅2(𝑡) =
1

𝑛𝑘
∑∑∑�̂�𝑥𝑙(𝑖)𝑗(𝑡)

𝑘

𝑙=1

𝑘

𝑖=1

𝑚

𝑗=1

. 

It is pertinent to mention here that we assume the positivity between 𝑌 and 𝑋. However, if there is 

a negative relation between 𝑌 and 𝑋, then the sorting process is carried out in a descending way in 

step 2. Zamanzade and Mahdizadeh (2018) concluded, based on a numerical study, that �̂�𝑅2(𝑡) 

outperforms �̂�𝑅(𝑡) at almost the considered cases, particularly when the rankings are done 

perfectly, i.e., 𝑌 and 𝑋 are linearly correlated variables. 
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3. The CDF estimation in DRSS  

In this part, the main components of this study are described. At the beginning, the DRRSS will 

be briefly presented. Following, the proposed CDF estimators based on DRRSS are derived and 

explained. 

3.1 The DRRSS scheme  

DRRSS is a novel scheme recently suggested by Taconeli (2023) as another variation of the 

traditional RSS. He argued that adopting DRRSS can allow scholars to obtain more representative 

samples from the parent population at the same number of sampling items, 𝑘𝑛, needed for 

producing RSS. In contrast, RSS and DRRSS depend on the same number of wasted measurement 

units during the ranking mechanism. They have a strong distinction between the two designs. The 

DRRSS technique requires selecting the sampling units through two ranking stages rather than one 

ranking step, which is carried out in the RSS setting to get an extra representation of the population 

of interest. One practical deficiency concerning DRRSS is that it is more prone to ranking errors 

than RSS due to repeated performing the raking stage. Thus, it may be advisable to adopt DRSS if 

the ranking quality is reasonable enough. The steps of balanced DRRSS can be described as 

follows: 

1- Assign randomly 𝑘2 items into equal 𝑘 sets from the interested population.  

2- Sort the k sampling items within each set without exact quantification by judgment or any 

cheap ranking rule.  

3- Resort the sampling items in Step 2 separately across the judgmental order statistics 𝑖 =

1,2, … , 𝑘, based on the same ranking rule carried out in the first ranking step.  

4- Measure exactly the median units across 𝑖𝑡ℎ judgment order statistics for 𝑘 odd, i.e., 

consider the items in position (
𝑘+1

2
)
𝑡ℎ

 for 𝑖 = 1,2, … , 𝑘. while for 𝑘 even, measure the 

judgment order statistics in position (
𝑘

2
) across 1𝑠𝑡 , 3𝑟𝑑, … (𝑘 − 1)𝑡ℎ judgment order 

statistics and, on the other hand, (
𝑘

2
+ 1) across the remaining judgment order statistics.  

5- For a larger sample, the above steps can be repeated 𝑚 cycles to obtain a DRRSS with size 

𝑛 = 𝑘𝑚. 

One can easily conclude that the sampling items measured by DRRSS are no longer independent 

due to the second-ranking stage. Let 𝑌(𝑧)(𝑖)𝑗  denotes the item position in 𝑖𝑡ℎ judgment order 

statistics during the first ranking stage and in the position 𝑧𝑡ℎ judgment order statistics in the 

second-ranking stage from 𝑗𝑡ℎ cycle. Mathematically, the DRRSS measured sampling units can be 

expressed as: 

{
 

 {𝑌
(
𝑘+1
2
)(𝑖)𝑗

;    𝑖 = 1,2, … , 𝑘 , 𝑗 = 1,2, … ,𝑚} , if k  is odd 

{(𝑌
(
𝑘
2
)(2𝑖−1)𝑗

; 𝑌
(
𝑘
2
+1)(2𝑖)𝑗

) ;    𝑖 = 1,2, … ,
𝑘

2
, 𝑗 = 1,2, … ,𝑚} , if k  is even
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Taconeli (2023) investigated numerically that DRRSS enables us to estimate the population mean 

with higher efficiency and precision than RSS, specifically when the parent distribution is 

symmetric. Abdallah and Al-Omari (2024) used DRRSS to propose a new CDF estimator based 

on the empirical distribution function given by: 

�̂�𝐷(𝑡) =

{
 
 
 

 
 
 1

𝑛
∑∑𝐼(𝑌

(
𝑘+1
2
)(𝑖)𝑗

≤ 𝑡)

𝑘

𝑖=1

𝑚

𝑗=1

, if 𝑘  is odd

1

𝑛
∑

(

 ∑(𝐼(𝑌
(
𝑘
2
)(2𝑖−1)𝑗

≤ 𝑡) + 𝐼(𝑌
(
𝑘
2
+1)(2𝑖)𝑗

≤ 𝑡))

𝑘
2

𝑖=1
)

 

𝑚

𝑗=1

, if 𝑘  is even.

 

Abdallah and Al-Omari (2024) discussed the consistency property and the asymptotic distribution 

of �̂�𝐷(𝑡). Moreover, based on a series of comparison studies, they found that �̂�𝐷(𝑡) performs better 

than �̂�𝑅(𝑡) for most of the considered cases, regardless of the ranking quality.  

3.2 The proposed CDF estimators using auxiliary information  

Proceeding the same way described by Kvam and Samaniego (1994), one can utilize the ranking 

information generated by the measured sampling items for the construction of the first proposed 

CDF estimator under DRRSS corresponding to �̂�𝑅1(𝑡). Our idea can be summarized as follows: 

• If 𝑘  is odd 

For a certain 𝑡, if we remarked that the sampling item 𝑌
(
𝑘+1

2
)(𝑖)𝑗

 actually is less than 𝑡, then one 

can claim that: 

𝑃(𝑌(𝑙)(𝑖)𝑗 < 𝑡) = 1                     𝑖 = 1,2, … 𝑘;  𝑙 = 1,2…
𝑘 − 1

2
.       (5)   

while for the remaining items:  

𝑃 (𝑌(𝑙)(𝑖)𝑗 < 𝑡|𝑌(𝑙)(𝑖)𝑗 > 𝑌
(
𝑘+1
2
)(𝑖)𝑗

) =

𝐹(𝑡) − 𝐹 (𝑦
(
𝑘+1
2
)(𝑖)𝑗

)

1 − 𝐹 (𝑦
(
𝑘+1
2
)(𝑖)𝑗

)
    

𝑖 = 1,2, … 𝑘;  𝑙 =
𝑘 + 3

2
,
𝑘 + 5

2
…𝑘.      (6)   

In contrast, if we observed that the sampling item 𝑌
(
𝑘+1

2
)(𝑖)𝑗

 actually is greater than 𝑡, then it is 

logical to think about that: 

𝑃(𝑌(𝑙)(𝑖)𝑗 < 𝑡) = 0,                                   𝑖 = 1,2, …𝑘;  𝑙 =
𝑘 + 3

2
,
𝑘 + 5

2
…𝑘.       (7)   
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yet for the remaining items: 

              𝑃 (𝑌𝑖(𝑙)𝑗 < 𝑡|𝑌𝑖(𝑙)𝑗 < 𝑌
(
𝑘+1
2
)(𝑖)𝑗
) =

𝐹(𝑡)

𝐹 (𝑌
(
𝑘+1
2
)(𝑖)𝑗
)
 ,            ∀ 𝑙 = 1,2…

𝑘 − 1

2
.                   (8) 

Putting (5 − 8) together, the proposed CDF estimator under DRRSS for odd 𝑘 can be formulated 

as: 

�̂�𝐷𝑂1
∗ (𝑡) =

1

𝑛𝑘
∑∑

[
 
 
 
 

(

 
 
(
𝑘 + 1

2
) + (

𝑘 − 1

2
)

𝐹(𝑡) − 𝐹 (𝑦
(
𝑘+1
2
)(𝑖)𝑗

)

1 − 𝐹 (𝑦
(
𝑘+1
2
)(𝑖)𝑗

)

)

 
 
𝐼 (𝑌

(
𝑘+1
2
)(𝑖)𝑗

< 𝑡)

]
 
 
 
 𝑘

𝑖=1

𝑚

𝑗=1

+ [(
𝑘 − 1

2
)(

𝐹(𝑡)

𝐹 (𝑦
(
𝑘+1
2
)(𝑖)𝑗

)
) 𝐼 (𝑌

(
𝑘+1
2
)(𝑖)𝑗

> 𝑡)] 

• If 𝑘  is even 

{

𝑌
(
𝑘
2
)(𝑖)𝑗

 < 𝑡      𝑖 = 1,3, . . . 𝑘 − 1 

𝑌
(
𝑘
2
+1)(𝑖)𝑗

< 𝑡           𝑖 = 2,4, … 𝑘
 

then one can impute the remaining items as: 

{
 
 
 
 
 
 

 
 
 
 
 
 

{
  
 

  
 𝑃(𝑌(𝑙)(𝑖)𝑗 < 𝑡) = 1      𝑙 = 1,2…

𝑘

2
− 1  

𝑃(𝑌(𝑙)(𝑖)𝑗 < 𝑡|𝑌(𝑙)(𝑖)𝑗 > 𝑌(𝑘
2
)(𝑖)𝑗

) =

𝐹(𝑡) − 𝐹 (𝑦
(
𝑘
2
)(𝑖)𝑗

)

1 − 𝐹 (𝑦
(
𝑘
2
)(𝑖)𝑗

)

.                            

𝑙 =
𝑘 + 2

2
,
𝑘 + 4

2
…𝑘

     𝑖 = 1,3, . . . 𝑘 − 1

{
 
 

 
  𝑃(𝑌(𝑙)(𝑖)𝑗 < 𝑡) = 1          𝑙 = 1,2…

𝑘

2
; .

𝑃 (𝑌(𝑙)(𝑖)𝑗 < 𝑡|𝑌(𝑙)(𝑖)𝑗 > 𝑌(𝑘
2
+1)(𝑖)𝑗

) =

𝐹(𝑡) − 𝐹 (𝑦
(
𝑘
2
+1)(𝑖)𝑗

)

1 − 𝐹 (𝑦
(
𝑘
2
+1)(𝑖)𝑗

)
  𝑙 =

𝑘

2
+ 2,

𝑘

2
+ 3…𝑘.

𝑖 = 2,4,…𝑘

. (9) 

Whereas if: 

{

𝑌
(
𝑘
2
)(𝑖)𝑗

 > 𝑡      𝑖 = 1,3, . . . 𝑘 − 1 

𝑌
(
𝑘
2
+1)(𝑖)𝑗

> 𝑡           𝑖 = 2,4, … 𝑘
 

then one can impute the remaining items as: 
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{
 
 
 
 
 

 
 
 
 
 

{
 
 

 
 𝑃(𝑌(𝑙)(𝑖)𝑗 < 𝑡) = 0      𝑙 =

𝑘 + 2

2
,
𝑘 + 4

2
…𝑘  

𝑃 (𝑌(𝑙)(𝑖)𝑗 < 𝑡|𝑌(𝑙)(𝑖)𝑗 < 𝑌(𝑘
2
)(𝑖)𝑗

) =
𝐹(𝑡)

𝐹 (𝑦
(
𝑘
2
)(𝑖)𝑗

)

.                            

   𝑙 = 1,2…
𝑘

2
− 1   𝑖 = 1,3, . . . 𝑘 − 1

{
 
 

 
  𝑃(𝑌(𝑙)(𝑖)𝑗 < 𝑡) = 0         𝑙 =

𝑘

2
+ 2,

𝑘

2
+ 3…𝑘 .

𝑃 (𝑌(𝑙)(𝑖)𝑗 < 𝑡|𝑌(𝑙)(𝑖)𝑗 < 𝑌(𝑘
2
+1)(𝑖)𝑗

) =
𝐹(𝑡)

𝐹 (𝑦
(
𝑘
2
+1)(𝑖)𝑗

)
 𝑙 = 1,2…

𝑘

2
 .

𝑖 = 2,4,…𝑘

           (10) 

In the light of (9 − 10), the proposed CDF estimator under DRRSS for even 𝑘 can be formulated 

as: 

�̂�𝐷𝐸1
∗ (𝑡) =

1

𝑛𝑘
∑∑

[
 
 
 
 

(

 
 
(
𝑘

2
) + (

𝑘

2
− 1)

𝐹(𝑡) − 𝐹 (𝑦
(
𝑘
2
)(2𝑖−1)𝑗

)

1 − 𝐹 (𝑦
(
𝑘
2
)(2𝑖−1)𝑗

)

)

 
 
𝐼 (𝑌

(
𝑘
2)(2𝑖−1)𝑗

< 𝑡)

]
 
 
 
 

𝑘
2

𝑖=1

𝑚

𝑗=1

+ [(
𝑘

2
− 1)(

𝐹(𝑡)

𝐹 (𝑦
(
𝑘
2
)(2𝑖−1)𝑗

)
) 𝐼 (𝑌

(
𝑘
2)(2𝑖−1)𝑗

> 𝑡)]

+

[
 
 
 
 

(

 
 
(
𝑘

2
+ 1) + (

𝑘

2
)

𝐹(𝑡) − 𝐹 (𝑦
(
𝑘
2
+1)(2𝑖)𝑗

)

1 − 𝐹 (𝑦
(
𝑘
2
+1)(2𝑖)𝑗

)

)

 
 
𝐼 (𝑌

(
𝑘
2+1)(2𝑖)𝑗

< 𝑡)

]
 
 
 
 

+

[
 
 
 
 

[(
𝑘

2
)(

𝐹(𝑡)

𝐹 (𝑦
(
𝑘
2
+1)(2𝑖)𝑗

)
)𝐼 (𝑌

(
𝑘
2+1)(2𝑖)𝑗

> 𝑡)]

]
 
 
 
 

. 

The problem of �̂�𝐷𝑂1
∗ (𝑡) essentially boils down to estimation of 𝐹(𝑡) and 𝐹 (𝑦

(
𝑘+1

2
)(𝑖)𝑗

). Similar to 

the steps of EM algorithm proceeded in the preceding section, one can overcome this problem by 

using the following steps: 

1- Set 𝑟 = 0.  

2- Estimate the unknown CDFs in �̂�𝐷𝑂1
∗ (𝑡) with the estimator proposed by Abdallah and Al-

Omari (2024), �̂�𝐷(𝑡), i.e. compute the following equation: 

�̂�𝐷𝑂1
∗(𝑟)(𝑡) =

1

𝑛𝑘
∑∑

[
 
 
 
 

(

 
 
(
𝑘 + 1

2
) + (

𝑘 − 1

2
)

�̂�𝐷(𝑡) − �̂�𝐷 (𝑦(𝑘+12 )(𝑖)𝑗
)

1 − �̂�𝐷 (𝑦(𝑘+12 )(𝑖)𝑗
)

)

 
 
𝐼 (𝑌

(
𝑘+1
2 )(𝑖)𝑗

< 𝑡)

]
 
 
 
 

+ [(
𝑘 − 1

2
)(

�̂�𝐷(𝑡)

�̂�𝐷 (𝑦(𝑘+12 )(𝑖)𝑗
)
)𝐼 (𝑌

(
𝑘+1
2 )(𝑖)𝑗

> 𝑡)]

𝑘

𝑖=1

𝑚

𝑗=1

, 

3- Replace 𝑡 in �̂�𝐷𝑂1
∗(𝑟)(𝑡) with all the sampling items, i.e. compute the following equation: 
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�̂�𝐷𝑂1
∗(𝑟)

(𝑦
(
𝑘+1
2
)(𝑙)𝑤

) =
1

𝑛𝑘
∑∑

[
 
 
 
 

(

 
 
(
𝑘 + 1

2
) + (

𝑘 − 1

2
)

�̂�𝐷 (𝑦(𝑘+1
2
)(𝑙)𝑤

) − �̂�𝐷 (𝑦(𝑘+1
2
)(𝑖)𝑗

)

1 − �̂�𝐷 (𝑦(𝑘+12 )(𝑖)𝑗
)

)

 
 
𝐼 (𝑌

(
𝑘+1
2
)(𝑖)𝑗

< 𝑦
(
𝑘+1
2
)(𝑙)𝑤

)

]
 
 
 
 𝑘

𝑖=1

𝑚

𝑗=1

+ [(
𝑘 − 1

2
)(

�̂�𝐷 (𝑦(𝑘+1
2
)(𝑙)𝑤

)

�̂�𝐷 (𝑦(𝑘+12 )(𝑖)𝑗
)
) 𝐼 (𝑌

(
𝑘+1
2
)(𝑖)𝑗

> 𝑦
(
𝑘+1
2
)(𝑙)𝑤

)], 

𝑙 = 1,2, . . 𝑘 and 𝑤 = 1,2, . . 𝑚.  

4- Set 𝑟 = 𝑟 + 1. 

5- Obtain �̂�𝐷𝑂1
∗(𝑟)(𝑡) by using the following recursive equation: 

�̂�𝐷𝑂1
∗(𝑟)(𝑡) =

1

𝑛𝑘
∑∑

[
 
 
 
 

(

 
 
(
𝑘 + 1

2
) + (

𝑘 − 1

2
)

�̂�𝐷𝑂1
∗(𝑟−1)(𝑡) − �̂�𝐷𝑂1

∗(𝑟−1)
(𝑦

(
𝑘+1
2
)(𝑖)𝑗

)

1 − �̂�𝐷𝑂1
∗(𝑟−1)

(𝑦
(
𝑘+1
2
)(𝑖)𝑗

)

)

 
 
𝐼 (𝑌

(
𝑘+1
2
)(𝑖)𝑗

< 𝑡)

]
 
 
 
 𝑘

𝑖=1

𝑚

𝑗=1

+ [(
𝑘 − 1

2
)(

�̂�𝐷𝑂1
∗(𝑟−1)(𝑡)

�̂�𝐷𝑂1
∗(𝑟−1)

(𝑦
(
𝑘+1
2 )(𝑖)𝑗

)
) 𝐼 (𝑌

(
𝑘+1
2
)(𝑖)𝑗

> 𝑡)], 

6- Repeat steps (4-5) until stopping rule satisfies. i.e. 

|�̂�𝐷𝑂1
∗(𝑟)(𝑡) − �̂�𝐷𝑂1

∗(𝑟−1)(𝑡)| < .001 

7- Finally, the suggested estimator denoted by �̂�𝐷𝑂1(𝑡) given by: 

�̂�𝐷𝑂1(𝑡) = �̂�𝐷𝑂1
∗(𝑟)(𝑡) 

By applying the same idea explained above, �̂�𝐷𝐸1
∗ (𝑡) can become as an estimable function denoted 

by �̂�𝐷𝐸1(𝑡). 

 

The second proposed CDF estimator can be obtained, firstly, by defining the items of concomitant-

based DRRSS as:  

{
 
 

 
 {(𝑌

(
𝑘+1
2
)(𝑖)𝑗

, 𝑋
(
𝑘+1
2
)(𝑖)𝑗

) ;    𝑖 = 1,2,… , 𝑘 , 𝑗 = 1,2, … ,𝑚} , if k  is odd 

{((𝑌
(
𝑘
2
)(2𝑖−1)𝑗

, 𝑋
(
𝑘
2
)(2𝑖−1)𝑗

) ; (𝑌
(
𝑘
2
+1)(2𝑖)𝑗

, 𝑋
(
𝑘
2
+1)(2𝑖)𝑗

)) ;    𝑖 = 1,2, … ,
𝑘

2
, 𝑗 = 1,2,… ,𝑚} , if k  is even

, 

where {𝑋(ℎ)(𝑖)𝑗;   ℎ = 1,… , 𝑘; 𝑖 = 1,… , 𝑘; 𝑗 = 1, … ,𝑚} be the set of all concomitant variable values 

used to impute the wasted measurement sampling units of 𝑌. Secondly, by implementing the same 

manner previously reported, adopted for getting �̂�𝑅2(𝑡) which can be listed as: 1- Create new 

variables (𝓎𝑧
∗ , 𝓍𝑧

∗  , 𝑧 = 1…𝑛), including all the values of the interested variable and their 



The Egyptian Statistical Journal (ESJ), 68 (1): 59-77 

   
69 

corresponding concomitant sampling items. 2- Sorting ascending  (𝓎𝑧
∗ , 𝓍𝑧

∗) according to 𝓍∗ items 

leading to (𝓎[𝑧]
∗ , 𝓍(𝑧)

∗ ). 3- Calculate the isotonized values for 𝐼(𝓎[𝑧]
∗ ≤ 𝑡) and keep these values in 

ℱ̂𝑧
𝑖𝑠𝑜(𝑡). For each {𝑥(ℎ)(𝑖)𝑗;   ℎ = 1,… , 𝑘; 𝑖 = 1,… , 𝑘; 𝑗 = 1, … ,𝑚}, estimate the corresponding 

ℱ̂𝑧
𝑖𝑠𝑜(𝑡) by implementing the linear interpolation formula given by: 

ℱ̂𝓍(𝑡) =

{
 
 

 
 

ℱ̂𝑧
𝑖𝑠𝑜(𝑡)

ℱ̂1
𝑖𝑠𝑜(𝑡) 𝓍 ≤ 𝑥(1)

∗

+
ℱ̂𝑧+1
𝑖𝑠𝑜 (𝑡)−ℱ̂𝑧

𝑖𝑠𝑜(𝑡)

𝓍(𝑧+1)
∗ −𝓍(𝑧)

∗  [𝓍 − 𝓍(𝑧)
∗ ] 𝓍(𝑧)

∗ ≤ 𝓍 < 𝓍(𝑧+1)
∗    𝑧 = 1…𝑛− 1

ℱ̂𝑛
𝑖𝑠𝑜(𝑡) 𝓍 ≥ 𝓍(𝑛)

∗

. 

6. Finally, the suggested estimator denoted by �̂�𝐷2(𝑡) given by: 

�̂�𝐷2(𝑡) =
1

𝑛𝑘
∑∑∑ℱ̂𝑥(ℎ)(𝑖)𝑗(𝑡)

𝑘

ℎ=1

𝑘

𝑖=1

𝑚

𝑗=1

. 

It is interesting to remark that the preceding steps described for getting ℱ̂𝐷2(𝑡) does not depend on 

whether 𝑘 is either an odd or even number, as opposed to what was done early in deriving our first 

proposed CDF estimator.  

4. Monte Carlo Comparisons 

In this part, we examine to what extent the proposed estimators perform well relative to their 

analog under RSS using a comprehensive simulation experiment. The relative efficiency (RE) 

criterion is used for comparison purposes defined as:  

𝑅𝐸(𝑡)1 = {

𝑀𝑆𝐸(�̂�𝑅1(𝑡))

𝑀𝑆𝐸(�̂�𝐷𝑂1(𝑡))
if k  is odd

𝑀𝑆𝐸(�̂�𝑅1(𝑡))

𝑀𝑆𝐸(�̂�𝐷𝐸1(𝑡))
if k  is even

           and   𝑅𝐸(𝑡)2 =
𝑀𝑆𝐸(�̂�𝑅2(𝑡))

𝑀𝑆𝐸(�̂�𝐷2(𝑡))
, 

Where 𝑀𝑆𝐸 refers to mean square error. Dell and Clutter’s (1972) model with controlling 

parameter 𝜌  is adopted for assessing the quality of ranking such that 𝜌 𝜖 {1,0.9, 0.5}, which 𝜌 = 1 

for perfect ranking, 𝜌 = 0.9 for good ranking, and 𝜌 = 0.5 for weak ranking. Standard normal, 

standard uniform and standard exponential will be assumed hereafter concerning the distribution 

of the parent population. This enables us to investigate the properties of the proposed estimators 

under both symmetric and asymmetric populations. Different set sizes and cycle sizes are 

considered: (𝑘,𝑚) = (3,5), (3,10), (5,3), (5,6) , (4,6), (4,10), (6,4) and (6,5). The values of 

𝑅𝐸(𝑡) are computed for 𝑡 = 𝑄𝑝, 𝑝 = 0.05,0.25, 0.5, 0.75 and 0.90. where 𝑄𝑝 is the 𝑝𝑡ℎ quantile 

of the underlying distribution. Using R language and environment for statistical computing 

supported by R Core Team (2020), the code is available upon request from the author, a total of 

5000 samples were simulated under various combinations of 𝑝, 𝑘,𝑚 and 𝜌 at each distribution as 

displayed in Tables (1 − 6).  

One can observe that the proposed estimators have a very promising performance in all the cases, 

for values of 𝑡 lie at the center of the underlying distribution. A sizeable efficiency gain can be 
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obtained by improving the ranking quality. Moving 𝑡 for the upper / lower tail of the distribution 

leads to a loss in the efficiency of all the proposed estimators. The proposed estimators have a very 

competitive performance for small sample sizes with a few exceptions. The pattern of the parent 

distribution does not have a pronounced effect on the behavior of the proposed estimators. 

Generally speaking, the behavior of the proposed estimators is better for symmetric distributions. 

Overall examination of the simulation results reported in Tables (1 − 6), shows that none of the 

presented estimators can uniformly beat the others. The results are reasonably good in favor of the 

DRSS-based estimators when the true value of 𝐹(𝑡) is near the center of the underlying parent 

distribution and the ranking quality is good. This fact enjoys the advantage of being almost robust 

to parent distribution. This may be justified by the fact that DRSS selects the median item during 

the implementation of the second stage. Further, DRSS requires performing the ranking process 

twice to be more sensitive to the error ranking relative to RSS. It is worth mentioning that 

additional comparisons are performed between the proposed procedures and  

�̂�𝐷(𝑡) proposed by Abdallah and Al-Omari (2024). It turns out that the proposed procedures 

uniformly outperform the latter. Thus, these results are omitted for space considerations.  

5. Empirical study 

In this part, the performance of the proposed estimators is assessed based on a real data set. This 

data set was found by Chen (2004), and it was of size 396 sampling items with seven variables. 

Hereafter, two variables will only be considered: "the entire height in feet" denoted by the 

interested variable, and the "diameter in centimeters at breast height," denoted by the concomitant 

variable. It is easy to explore that 𝜌 between "the entire height in feet" and "diameter in centimeters 

at breast height" equals 0.91, implying that the ranking quality expectedly will be reasonably 

perfect. For the same values of 𝑘 ,𝑚, and 𝑝 used in section 4, 5,000 samples are generated using 

RSS and DRRSS mechanisms. To guarantee that the independent condition of the generated 

samples is satisfied, all samples are drawn with replacement. Again, the procedures discussed are 

calculated for each of the generated samples. The 𝑅𝐸(𝑡)1 and 𝑅𝐸(𝑡)2 values are obtained as 

reported in Table (7 − 8). t reveals that the proposed estimators are the winner and have 

satisfactory precision relative to the RSS-based estimators if  𝑡 lies away from the boundaries. 

Moreover, in many cases, better efficiency can be obtained by increasing the set size rather than 

the cycle size. Thus, there is a strong consistency between the remarks concluded based on Tables 

(1 − 6) and the notes observed from Tables (7 − 8). Further evidence of comparing the proposed 

CDF estimators and their competitors is exhibited by an additional detailed particular case that 

visualizes the actual population CDF besides the proposed CDF estimators and their competitors 

using a tree dataset in the case of 𝑘 = 5 and 𝑚 = 6. It is apparent that the lines of the proposed 

CDF estimators become closer to the line of the true CDF at most of the middle points and 

sometimes for the upper tail point regarding to �̂�𝐷𝑂1(𝑡). 
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Table 1: Estimated 𝑅𝐸1(𝑡) based on standard normal distribution 

 
Table 2: Estimated 𝑅𝐸2(𝑡) based on standard normal distribution 

 

 

    (𝑘,𝑚)     

𝐹(𝑡) 
 

𝜌 =      (3,5) (3,10) (5,3) (5,6) (4,6) (4,10) (6,4) (6,5) 

0.05 1.00 0.97 0.75 0.85 0.69 0.67 0.59 0.68 0.55 

0.90 0.85 0.79 0.85 0.78 0.64 0.59 0.69 0.71 

0.50 0.79 0.88 0.76 0.79 0.66 0.72 0.75 0.75 

0.25 1.00 1.22 1.26 1.54 1.33 1.15 1.05 1.36 1.57 

0.90 1.11 1.13 1.11 1.05 1.14 1.14 1.16 1.07 

0.50 1.18 0.92 1.03 0.85 1.01 0.93 1.03 0.98 

0.50 1.00 1.64 1.65 2.19 2.15 1.19 1.28 3.01 2.92 

0.90 1.35 1.46 1.52 1.62 1.33 1.18 1.53 1.41 

0.50 1.13 1.16 1.28 1.11 1.23 1.10 1.30 1.22 

0.75 1.00 1.15 1.29 1.58 1.37 1.08 0.97 1.34 1.01 

0.90 1.15 1.15 1.19 0.98 1.07 1.11 1.11 1.04 

0.50 1.15 0.99 1.01 0.92 1.02 0.96 1.02 1.05 

0.90 1.00 0.92 0.91 0.73 0.82 0.54 0.78 0.66 0.87 

0.90 0.88 0.78 0.91 0.82 0.94 0.71 0.67 0.78 

0.50 0.98 0.79 0.88 0.84 0.89 0.81 0.65 0.73 

    (𝑘,𝑚)     

𝐹(𝑡) 
 

𝜌 =      (3,5) (3,10) (5,3) (5,6) (4,6) (4,10) (6,4) (6,5) 

0.05 1.00 0.88 0.71 0.79 0.57 0.88 0.98 0.78 0.76 

0.90 0.75 0.65 0.87 0.65 0.99 1.01 0.91 0.85 

0.50 0.79 0.85 0.77 0.69 0.95 1.01 0.95 0.85 

0.25 1.00 1.11 1.15 1.29 1.11 1.21 1.03 0.99 1.05 

0.90 1.17 1.12 1.13 1.22 1.01 0.99 1.12 1.02 

0.50 1.24 1.05 1.11 0.98 1.03 1.01 1.14 1.10 

0.50 1.00 1.05 1.11 1.15 1.17 1.05 1.09 1.25 1.09 

0.90 1.11 1.09 1.09 1.28 1.22 1.10 1.08 1.05 

0.50 1.17 1.15 1.15 1.06 1.09 1.07 1.11 1.06 

0.75 1.00 1.09 1.13 1.31 1.20 1.22 0.98 0.99 0.98 

0.90 1.13 1.15 1.11 1.19 0.95 1.05 1.10 1.01 

0.50 1.20 1.01 1.10 1.02 1.01 1.04 1.01 1.08 

0.90 1.00 0.87 0.75 0.74 0.75 1.03 0.99 0.84 0.92 

0.90 0.89 0.88 0.92 1.02 0.97 1.02 1.01 0.99 

0.50 0.99 0.84 0.85 0.95 0.99 1.03 1.01 0.93 
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Table 3: Estimated 𝑅𝐸1(𝑡) based on standard exponential distribution 

 

Table 4:   Estimated 𝑅𝐸2(𝑡) based on standard exponential distribution 

 

 

    (𝑘,𝑚)     

𝐹(𝑡) 
 

𝜌 =      (3,5) (3,10) (5,3) (5,6) (4,6) (4,10) (6,4) (6,5) 

0.05 1.00 1.01 0.78 0.79 0.69 0.69 0.66 0.69 0.76 

0.90 0.96 0.79 0.79 0.81 0.65 0.66 0.68 0.66 

0.50 0.76 0.74 0.86 0.81 0.87 0.69 0.86 0.64 

0.25 1.00 1.11 1.07 1.60 1.10 1.15 1.95 1.85 1.62 

0.90 0.96 1.12 1.16 1.02 1.14 1.21 1.10 1.01 

0.50 0.96 1.05 1.05 1.02 1.12 1.02 0.99 0.89 

0.50 1.00 1.67 1.70 2.14 2.12 1.18 1.11 2.01 2.91 

0.90 1.33 1.48 1.56 1.61 1.19 1.12 1.65 1.67 

0.50 1.19 1.20 1.25 1.27 1.16 1.06 1.16 1.15 

0.75 1.00 1.17 1.07 1.37 1.03 1.02 0.95 1.16 0.99 

0.90 1.07 0.99 1.04 0.99 0.78 0.79 0.98 0.69 

0.50 1.14 1.02 1.07 0.99 0.78 0.66 0.89 0.78 

0.90 1.00 0.79 0.81 0.72 0.89 0.85 0.74 0.66 0.65 

0.90 0.86 0.89 0.79 0.82 0.76 0.65 0.78 0.56 

0.50 0.89 0.88 0.88 0.77 0.78 0.55 0.69 0.55 

    (𝑘,𝑚)     

𝐹(𝑡) 
 

𝜌 =      (3,5) (3,10) (5,3) (5,6) (4,6) (4,10) (6,4) (6,5) 

0.05 1.00 0.89 0.67 0.69 0.59 0.92 0.90 0.77 0.71 

0.90 0.92 0.69 0.75 0.79 1.01 1.11 0.90 0.78 

0.50 0.70 0.62 0.89 0.68 1.02 0.98 1.02 0.75 

0.25 1.00 1.05 1.02 1.27 1.11 1.13 0.99 1.06 0.93 

0.90 1.01 1.21 1.18 1.08 1.09 1.02 0.98 1.02 

0.50 1.02 1.12 1.08 1.10 1.11 0.96 1.08 1.02 

0.50 1.00 1.13 1.09 1.09 1.12 1.08 1.13 1.14 1.19 

0.90 1.13 1.08 1.10 1.09 1.17 1.06 1.10 1.12 

0.50 1.25 1.28 1.14 1.18 0.98 0.98 1.03 1.02 

0.75 1.00 1.09 0.98 1.28 1.14 1.03 0.97 0.91 0.82 

0.90 1.13 1.05 1.15 1.02 0.89 0.94 1.01 1.01 

0.50 1.23 1.14 1.20 1.07 0.97 0.92 1.10 1.02 

0.90 1.00 0.69 0.87 0.76 0.84 0.99 1.25 1.13 1.20 

0.90 0.90 0.87 0.89 0.99 1.09 1.19 1.14 1.11 

0.50 0.80 0.80 0.94 0.86 1.11 1.17 1.08 1.02 
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Table 5: Estimated 𝑅𝐸1(𝑡) based on standard uniform distribution 

 

Table 6: Estimated 𝑅𝐸2(𝑡) based on standard uniform distribution 

 

 

    (𝑘,𝑚)     

𝐹(𝑡) 
 

𝜌 =      (3,5) (3,10) (5,3) (5,6) (4,6) (4,10) (6,4) (6,5) 

0.05 1.00 0.95 0.81 0.95 0.66 0.58 0.72 0.76 0.86 

0.90 0.87 0.86 0.81 0.86 0.69 0.61 0.77 0.69 

0.50 0.88 0.74 0.77 0.91 0.74 0.70 0.71 0.78 

0.25 1.00 1.33 1.07 1.46 1.29 2.91 2.71 1.52 1.55 

0.90 0.96 1.08 1.12 0.99 1.35 1.37 1.16 0.99 

0.50 0.94 1.01 1.02 0.93 1.07 0.95 1.01 0.96 

0.50 1.00 1.70 1.71 2.01 2.45 1.14 1.21 3.12 2.74 

0.90 1.30 1.35 1.55 1.59 1.27 1.22 1.54 1.51 

0.50 1.16 1.22 1.20 1.14 1.08 1.15 1.38 1.28 

0.75 1.00 1.29 1.10 1.32 1.20 2.99 2.41 1.49 1.47 

0.90 1.01 1.06 1.10 1.01 1.31 1.30 1.11 0.98 

0.50 0.97 1.03 1.03 0.98 1.04 0.98 1.04 1.02 

0.90 1.00 0.89 0.79 0.78 0.87 0.65 0.82 0.78 0.57 

0.90 0.90 0.86 0.99 0.89 0.88 0.74 0.66 0.68 

0.50 1.03 0.89 0.86 0.76 0.71 0.99 0.89 0.85 

    (𝑘,𝑚)     

𝐹(𝑡) 
 

𝜌 =      (3,5) (3,10) (5,3) (5,6) (4,6) (4,10) (6,4) (6,5) 

0.05 1.00 0.89 0.68 0.79 0.69 0.97 0.95 0.86 0.76 

0.90 0.76 0.69 0.80 0.77 1.01 1.02 0.91 0.99 

0.50 0.79 0.67 0.79 0.78 1.04 0.97 0.85 0.81 

0.25 1.00 1.16 0.99 1.25 1.04 1.01 1.04 1.02 1.02 

0.90 1.01 1.14 1.20 1.11 1.03 1.01 1.08 1.01 

0.50 1.05 1.12 1.18 1.12 1.11 1.03 1.11 1.08 

0.50 1.00 1.20 1.09 1.09 1.17 1.06 1.12 1.17 1.08 

0.90 1.16 1.06 1.11 1.04 1.24 1.11 1.04 1.11 

0.50 1.19 1.23 1.12 1.10 0.98 1.05 1.21 1.11 

0.75 1.00 1.05 1.04 1.21 1.08 1.05 1.03 1.01 0.99 

0.90 0.99 1.05 1.16 1.08 1.04 0.99 1.05 1.02 

0.50 1.03 1.10 1.15 1.09 1.15 1.02 1.09 1.07 

0.90 1.00 0.74 0.69 0.77 0.86 1.02 1.02 0.99 1.02 

0.90 0.90 0.86 1.03 1.03 1.03 1.05 1.01 1.05 

0.50 0.91 0.88 0.88 0.79 1.05 0.99 1.02 1.05 
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Table 7: Estimated 𝑅𝐸1(𝑡) based on Tree dataset 

 

 
   

 

 

 

 

 

Table 8: Estimated 𝑅𝐸2(𝑡) based on Tree dataset 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: The population CDF and EM algorithm-based estimators based on tree data set 

 

 

 

 

 

 

Figure 2: The population CDF and concomitant-based estimators based on tree data set 

 

 

(𝑘,𝑚) 
 

𝐹(𝑡)      (3,5) (3,10) (5,3) (5,6) (4,6) (4,10) (6,4) (6,5) 

0.05 0.78 0.76 0.67 0.70 0.65 0.65 0.76 0.87 

0.25 1.23 1.17 1.20 1.25 1.17 1.06 1.25 1.38 

0.50 1.55 1.45 1.43 1.75 1.25 1.16 2.01 1.93 

0.75 1.06 1.13 1.35 1.12 0.89 0.76 1.05 0.94 

0.90 0.97 0.87 0.63 0.79 0.98 0.89 0.99 0.67 

(𝑘,𝑚) 
 

𝐹(𝑡)      (3,5) (3,10) (5,3) (5,6) (4,6) (4,10) (6,4) (6,5) 

0.05 0.95 0.88 0.90 0.98 1.02 1.03 1.03 0.95 

0.25 1.08 1.13 1.05 1.13 1.06 1.02 1.19 0.99 

0.50 1.19 1.10 1.04 1.11 1.21 1.21 1.31 1.20 

0.75 1.10 1.21 1.15 1.10 1.11 0.90 0.95 1.15 

0.90 1.06 0.90 0.87 1.01 1.17 0.99 0.89 0.99 

�̂�𝑫𝑶𝟏(𝒕) 
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6. Conclusion 

Here, we addressed the problem of CDF estimation in light of the missing data approach under a 

new RSS-based design known as DRRSS. Since this issue has not yet been adequately studied in 

the RSS literature, this study can be considered a first trial. Two novel CDF estimators are 

introduced. The first proposed estimator is based on the relationship between the ranks of measured 

sampling items and information from unmeasured sampling items. The second one depends 

essentially on the information generated by a concomitant variable. A series of simulated datasets 

enables us to identify and explore the precision of our proposed estimator relative to Kvam and 

Samaniego (1994) and Zamanzade and Mahdizadeh (2018). It is concluded that a considerable 

efficiency gain is observed if the actual CDF value at the center of the underlying distribution and 

the quality of rankings is reasonable enough. The performance of the proposed estimators is also 

examined based on an empirical dataset. Furthermore, additional studies are needed to address the 

theoretical properties of the proposed estimators. Moreover, examining the parametric inference, 

see Hassan et al. (2023) and the nonparametric inference, see Ghamsari et al. (2023) under DRRSS, 

can be considered a possible topic for future studies. The author seeks to take on these academic 

issues shortly.   
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