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 This study presents the proposal of a novel three-parameter Rayleigh 

distribution, namely Marshall-Olkin Power Rayleigh (MOPR) distribution. 

Marshall-Olkin Rayleigh (MOR), Marshall-Olkin Chi-Square, and Power 

Rayleigh (PR) are three particular sub-models of the new distribution. Several 

of its statistical and mathematical characteristics are derived such as explicit 

moments, mean deviation, quantile function, Rényi entropy measure, order 

statistics densities and maximum likelihood estimators. The new distribution 

may be more flexible since the density shapes are symmetrical and left skewed. 

The reverse hazard function and truncated moments have been used to obtain 

the characterizations of the suggested distribution. A Monte Carlo simulation 

has been conducted to assess maximum likelihood estimators' consistency with 

respect to bias, variance, and mean square error (MSE) measures. In the end, the 

proposed distribution is applied to an engineering science-related real data sets 

and it is seen that this distribution is a flexible model that may be a useful 

alternative to known distributions like Rayleigh, and Power Rayleigh 

distributions. 

 

1. Introduction 
One such approach used by different researchers is power transformation technique by which an 

extra parameter is added to the parent distribution. Induction of an extra parameter in the parent 

model usually provides greater flexibility and improves the goodness of fit. There are plethora of 

researchers who worked on power generalization of probability models, among them are Meniconi 

and Barry (1996), Ghitany et al. (2013), Zaka and Akhter (2013), Rady et al. (2016), Krishnarani 

(2016) and Shukla and Shanker (2018). 

The Rayleigh distribution is considered to be a useful lifetime distribution. It is very well-known 

distribution for modeling lifetime data in communication theory, physical science, engineering and 

medical imaging science. Several generalization of the Rayleigh distribution have been proposed 

by various authors in recent years among them, Transmuted Rayleigh (2013), Weibull Rayleigh 

(2015), Odd Generalized Exponential Rayleigh (2016), Weighted Rayleigh (2019), Topp-Leone 

Rayleigh (2019), Marshall-Olkin Alpha Power Rayleigh (2021) and Topp-Leone Power Rayleigh 

(2021). 
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Bhat and Ahmad (2020) was provided by an extended version of the Rayleigh distribution based 

on power transformation technique, namely PR distribution having two parameters 0,α   is a 

shape parameter and ,0  is a scale parameter, with probability density function (pdf) and 

cumulative distribution function (cdf), respectively given as follows: 

( ) ,0,,,
2

2

212

2
=














−

− yeyyg

y




 



                                                                                          (1) 

( ) ,0,,,1
2

2

2
−=














−

yeyG

y






                                                                                                   (2) 

The main goal of this paper, we discussed a new generalization of PR distribution called MOPR 

distribution based on the Marshall-Olkin generated family of distributions. The new distribution 

has several density shapes based on additional parameter, contains several important distributions 

as special sub-models, and provides more flexibility in modeling data for real lifetime applications. 

The paper is organized as follows. The MOPR distribution and its quantile function are introduced 

in Section 2. Some statistical functions of the proposed distribution are provided in Section 3, such 

as the moments, moment generating function, incomplete moments, mean deviations, Rényi 

entropy, and the density and moments of the order statistics. Section 4 is presented some 

characterizations of the new distribution. The estimation of the parameters by the maximum 

likelihood method is investigated in Section 5. A simulation study is performed in Section 6 to 

show the accuracy of the maximum likelihood parameters estimated. Two applications to Carbon 

Fibres real data sets are given in Section 7. In Section 8, we offer some concluding remarks. 

2. MOPR distribution 
The extended Marshall-Olkin generated family was introduced by Marshall and Olkin (1997). For 

any baseline distribution G(y) , the cdf of the family has the form: 
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where a is additional shape parameter and (.)1(.) GG −= . For PR distribution and Using (2) in 

(3), we get the cdf of the MOPR distribution with parameter ( ) ,a,=  as follows: 
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The associated pdf of new distribution is given by: 
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Figure 1 illustrates the density shapes of the MOPR distribution are left skewed and symmetrical 

as the increase of the value of additional parameter a. Figure 2 shows the cumulative shapes of the 

MOPR distribution is strictly increasing tends to one as the increasing of the value of additional 

parameter a. 
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Figure 1: Plots of the pdf of the MOPR distribution. 
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Figure 2: Plots of the cdf of the MOPR distribution. 

The corresponding survival, hazard function and reversed hazard functions of MOPR distribution, 

respectively are given by: 
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Figure 3: Plot of the survival function of the MOPR distribution 
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Figure 4: Plot of the hazard function of the MOPR distribution. 

The plots of the survival function decreases as the additional parameter a decrease and hazard 

function is increasing function overall the values of the parameters for the MOPR distribution as 

illustrated in Figure 3 and 4 respectively. 

2.1 Sub models  
Different distributions can be deduced of the MOPR distribution when its parameters are changed. 

The sub-models of X distributed (5) are listed in Table1. 
 

Table1: Sub-models of MOPR distribution 

MOPR Distribution 

1=  Marshall-Olkin Rayleigh (MOR)  (MirMostafaee et al. (2017)) 

1==  Marshall-Olkin Chi-Square (MO Chi-Square) 

1=a  Power Rayleigh (PR)  (Bhats and Ahmad (2020)) 

1== a  Rayleigh (R)  

1=== a  Chi-Square 

 

2.2 Quantile function 

The quantile function of the MOPR distribution can be defined as follows: 
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First quantile of the MOPR distribution can be obtained by putting q=0.25 in (6) as follows 
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The third quantile of the MOPR distribution is .
31
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Some statistical measures can be found by quantile function as skewness KS and kurtosis UK

measures. The KS  measure helps us to know to what degree and in which direction (positive or 

negative) the frequency distribution has a departure from symmetry, UK  gives a measure of 

flatness of distribution. These measures are less sensitive to outliers and they may exist for any 

distribution which does not have moments and can be defined based on quantile function, 

respectively as follows: 
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where ( ). Q  is the quantile function. Table 2 introduces some outcomes for skewness and kurtosis 

for different values of parameters. 

 

Table 2: Skewness and Kurtosis at 3=  

  

 

 

 

 

From Table 2,  

i. As α and a increase, skewness and kurtosis decrease.  

ii. the MOPR distribution is positive skewness and platykurtic  

2.3 Linear representation 
In this subsection we derived the representation of MOPR density function. Using Taylor’s 

expansion and generalized binomial expansion, respectively as follows: 

 5.0=  8.0=  1=  

a SK KU SK KU SK KU 

0.5 0.341 1.432 0.189 1.265 0.135 1.235 

1 0.262 1.306 0.124 1.214 0.076 1.215 

1.5 0.214 1.26 0.086 1.204 0.042 1.207 

2 0.181 1.24 0.061 1.204 0.02 1.203 

2.5 0.157 1.23 0.043 1.203 0.004 1.202 
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for 0,1  sw (a real non-integer). The pdf (5) can be rewritten as: 
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3. Statistical properties of the MOPR distribution 
Some statistical properties of the MOPR distribution such as moments, moment generating 

function, incomplete moment and related measures are discussed in this section. 

3.1 Non-Central moments 

The rth non central moments '

r  of a continuous random variable X is defined by:
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Using (8), we get the rth non central moments of the MOPR distribution as follows: 
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The first four non-central moments of the MOPR distribution can be calculated as follows: 

  

For 4and,3,2,1=r respectively, in equation (8), we get: 
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3.2 Central moments 
The kth central moments 

k  can be calculated through the following relation:
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Using the series expansion, we have 
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The first four central moments of the MOPR distribution can be calculated as follows: 
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3.3 Moment generating function 

The moment generating function ( )tM X  is generally defined as follows:
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3.4 Incomplete moments 

If a random variable is distributed according to MOPR distribution then its sth incomplete moments 

denoted by ( )stI ;  can be calculated as follows:
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                                                                                                              After solving the integral, we get 
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where ( ) 
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t

xs dxexst
0

1, is the lower incomplete gamma function. 

3.5 Mean deviation 
In statistics, the mount of variation in a population can be measured by the mean deviation of the 

mean and the median. and,1 2  are represents the mean deviation about the mean  and about 

the median ,M respectively. According to random variable distributed MOPR, and1 2 are given 

by: 
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where .)(.;MOPRI is the first incomplete moment of MOPR distribution defined in (9). The income 

distributions are used some inequality measures called Lorenz and Bonferroni curves, which can 

be calculated using incomplete moment. For MOPR distribution, the Lorenz ( )pL  and Bonferroni 
( )pB curves are, respectively, given as follows:  
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3.6 

3.6 Rényi entropy measure

 

The Rényi entropy is used to quantify the uncertainty of variation in a random variable X. The 

Rényi entropy measure of a continuous random variable X of order   is given by: 
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Hence, Rényi entropy measure of a random variable X distributed MOPR will be given by:   
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Using (7), the Rényi entropy measure of the MOPR distribution is: 
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3.7 Order statistics 
Order statistics arise frequently in the reliability, and life testing. In this subsection, for MOPR 

distribution we calculate the pdf of the kth order statistics, smallest order statistics, and largest order 

statistics. Also, the moment of the kth order statistics are derived. Suppose )()2()1( ... nXXX   

be an order statistics sample corresponding to n-sized random sample from the MOPR distribution 

with cdf (4) and pdf (5). The pdf of )(kX can be expressed as: 
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The thtk )1( −+  power of the cdf in (10) in series representation is given by: 
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Substituting (7) and (11) into (10), we get: 
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Equations (13) and (14) are represents the pdf of the smallest and largest MOPR order statistics 

respectively,  

( )

)13(,)(
2

2

)1(

2
,,,,

*

2









x

jlm

lmjitX e
an

xf
++−

=

and 

( )

)14(,)(
2

2

)(

2

,,,2









x

jlm

lmjiX e
an

xf
n

++−

=  

Furthermore, from (12), The moments of the kth order statistics MOPR distribution is given by:
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4. Characterization results 
A characterization of probability distributions played an important role in distribution theory and 

statistical studies of sciences and applied sciences. Here, we provide certain characterizations of 

MOPR distribution based on a relation between two truncated moments and in terms of the 

reversed hazard function. It is also considered one of the benefits of characterization that these 

results are also achieved in the following cases, when the interval of distribution is not closed and 

when the cdf does not have closed form, see Glanzel (1990). Here, we provide an important 

theorem due to Glanzel (1987) as a tool for the characterization of the MOPR distribution. 

Theorem 4.1 

Suppose that (Ω,F,P) be a given probability space and let H = [a, b] be an interval for some a< b . 

Let X : Ω → H be a continuous random variable. with cdf F. Also, suppose h and g are two real 

functions defined on H, where 



The Egyptian Statistical Journal (ESJ), 68 (1): 26-44 

 
37 

HxxxXXhExXXgE = ,)(.])([])([   

defined with some real function η. Assume that
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and F is twice 

continuously differentiable and strictly monotone function on the set H.  

Finally, assume that the equation ),()()( xgxhx = has no real solution in the interior of H. Then 

F is uniquely determined by the functions h, g and η, specifically 
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the normalized constant, such that  .1=
H

dF

 

We provide our characterizations in following 

subsections.

 
4.1 Characterizations based on truncated moments 

Characterizations of MOPR distribution in terms of a simple relationship between two truncated 

moments are presented in this subsection. 

Proposition 4.1  

Suppose that X: Ω →  ,0  be a continuous random variable. Also, let h and g are two real 

functions defined as follows: 
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The random variable X has pdf of MOPR if and only if the function   has the form 
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Proof  

Let X be a MOPR random variable with pdf (5), then 
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On the other hand, if  is given as above, then 
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According to Theorem 4.1, X has pdf (5).  
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Corollary 4.1  

Let X: Ω →  ,0  be a continuous random variable and let the function h  be as in Proposition 4.1. 

The pdf of X is (5) if and only if there exist functions g  and  defined in Theorem 5.1 satisfying 

the differential equation: 
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with general solution as follows: 
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where C is a constant. Note that a set of functions satisfying the above differential equation is 

given in Proposition 4.1 with C = 0. Noted that there are other triplets ),,( gh  verifying the 

conditions of Theorem 4.1. 

4.2 Characterizations based on reversed hazard function 
In this subsection we present a characterization of the MOPR distribution, for 1=a , in terms of the reverse hazard 

function. The reversed hazard function,

 

)(xrF , of a twice differentiable distribution function, F, is defined as 
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Proposition 4.2  

Let X: Ω →  ,0  be a continuous random variable. The random variable X has pdf (5) for 1=a , 

if and only if its reverse hazard function )(xrF verifies the following differential equation: 
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Proof  

Let X be a MOPR random variable with pdf (5), then clearly the above differential equation holds. 

On the other hand, if the differential equation holds, then 
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which is the reverse hazard function corresponding to the pdf (5) for 1=a . 
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5. Statistical inference 

In this section, we shall discuss the method of maximum likelihood estimation for estimating the parameters of the 

MOPR distribution. The method’s success stems no doubt from its many asymptotic properties for estimated 

parameters which are often utilized to obtain confidence intervals (CI) and test of statistical hypotheses. Suppose that 

).....,,,( 21 nxxxx = is a random sample from the MOPR distribution with pdf (5). Then the log-

likelihood function, denoted by lln , for of the MOPR distribution with parameter ( ) ,a,=  can 

be written as:  
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Differentiate (15) with respect to unknown parameters and then equate by zero, we get  
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Solve the desired system of equations by some numerical methods, to get maximum likelihood 

estimates (MLEs) )ˆ,ˆ,ˆ(ˆ  a= . The interval estimates of the parameters are obtained by first 

finding the approximate information matrix, whose elements are negative of the expected values 

of the second order derivative of logarithms of the likelihood function but it may be obtained by 

replacing expected values by their MLEs (see Cohen (1965)). Therefore, the elements of the 

approximate information matrix are given by: 
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Under certain regularity conditions, the asymptotic variance-covariance matrix for the MLEs can 

be obtained by inverting the information matrix. The approximate )%1(100 −  two-sided 

confidence intervals for
 

),,(  a=  can be respectively constructed as, 
 

    
,)ˆ(ˆ

2 aVarZa + ,)ˆ(ˆ
2   VarZ+  and

 
,)ˆ(ˆ

2   VarZ+  

where 2Z is the upper percentile of standard normal distribution. 

6. Simulation illustration 
In this section, we shall investigate the accuracy of the MLEs of parameters of the MOPR 

distribution based on certain measures, which are biase (B), mean square errors (MSEs) and 

variance for different sample sizes. The inversion method is used to generate samples, i.e., the 

random samples of sizes n=50(50)250 having the MOPR distribution are generated using (6). The 

number of replications is 1000 times and considers different values of parameters ( ) ,a,  are 

chosen. All computations of the simulation study were performed using Mathcad package 

software. The simulation results of calculating the B, MSE, and variance values are given in Table 

3. From Table (3), the values of MSE and variances decreases as the sample  size n increases. Thus, 

it can be concluded that the MLEs of MOPR are consistent.  
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7. Real data illustration 
The applicability of MOPR distribution is illustrated using engineering science real-world data 

sets in this section. Comparison of the proposed MOPR distribution has been made with the 

Rayleigh (R) distribution, and Power Rayleigh (PR) distribution with the help of two real data sets. 

To test the superiority of the MOPR distribution, some goodness of fit statistics measures can be 

used in comparison to some other distributions using the computational package Mathcad, namely 

lln2− ,  Kolmogorov-Smirnov (KS) and its p-value, Anderson-Darling )( A , Cramer-von Mises 

)( W , and Liao-Shimokawa (L-S) statistics. These statistics can determine how closely the MOPR 

distribution fit the empirical distribution of the data. The distribution with better fit than the others 

will be the one having the largest p-value and the smallest values for statistics.  

Table 3: Simulated results of the MOPR distribution. 

 

n 
)3.0,2.0,3.0( === a  )7.0,2.0,3.0( === a

 
B MSE Variance B MSE Variance 

50 0.111 

1.982 

7.828E(-4) 

0.013 

2.375 

4.393E(-5) 

0.012 

0.847 

4.501E(-5) 

0.438 

2.249 

0.021 

0.214 

2.129 

4.995E(-4) 

2.729E(-4) 

0.572 

4.981E(-5) 

100 0.110 

0.976 

3.369E(-4) 

0.012 

2.139 

3.751E(-5) 

9.799E(-3) 

0.447 

3.689E(-5) 

0.363 

1.154 

0.012 

0.114 

1.788 

1.962E(-4) 

1.598E(-4) 

0.457 

1.478E(-5) 

150 0.108 

0.349 

3.287E(-4) 

0.011 

0.327 

2.454E(-5) 

3.574E(-3) 

0.205 

2.341E(-5) 

0.325 

0.476 

6.967E(-3) 

0.096 

0.266 

5.514E(-5) 

2.786E(-5) 

0.039 

6.595E(-6) 

200 0.106 

0.244 

1.826E(-4) 

0.010 

0.053 

1.618E(-5) 

2.209E(-3) 

0.112 

1.585E(-5) 

0.316 

0.321 

5.107E(-3) 

0.094 

0.163 

2.982E(-5) 

1.698E(-5) 

0.011 

3.734E(-6) 

250 0.105 

0.139 

1.131E(-4) 

4.157E(-3) 

0.043 

1.031E(-5) 

1.259E(-3) 

0.024 

1.097E(-5) 

0.301 

0.315 

2.461(-3) 

0.091 

0.111 

8.194E(-6) 

1.132E(-5) 

0.065 

2.137E(-6) 

 

n 
)5.0,2.0,1.0( === a  )5.0,2.0,3.0( === a  

B MSE Variance B MSE Variance 

50 0.095 

2.101 

7.748E(-4) 

8.874E(-3) 

2.221 

2.096E(-3) 

9.069E(-3) 

1.978 

3.685E(-5) 

0.142 

2.249 

0.196 

0.028 

1.057 

5.211E(-4) 

6.415E(-4) 

1.921 

4.859E(-5) 

100 0.094 

1.117 

3.374E(-4) 

8.497E(-3) 

1.392 

3.741E(-5) 

3.573E(-4) 

0.998 

1.027E(-5) 

0.114 

1.234 

0.193 

0.018 

0.977 

2.149E(-4) 

1.277E(-4) 

0.533 

1.519E(-5) 

150 0.092 

0.509 

3.821E(-4) 

8.327E(-3) 

0.254 

1.029E(-5) 

9.797E(-5) 

0.409 

4.395E(-6) 

0.113 

0.536 

0.192 

0.014 

0.324 

7.871E(-5) 

2.666E(-5) 

0.037 

7.177E(-6) 

200 0.090 

0.446 

1.851E(-4) 

8.199E(-3) 

0.134 

2.454E(-6) 

4.158E(-5) 

0.022 

2.341E(-6) 

0.111 

0.401 

0.186 

0.012 

0.224 

5.023E(-5) 

1.657E(-5) 

0.077 

4.256E(-6) 

250 0.089 

0.336 

1.185E(-4) 

1.258E(-5) 

0.150 

1.616E(-6) 

2.209E(-5) 

0.022 

1.582E(-6) 

0.103 

0.383 

0.178 

0.011 

0.178 

1.512E(-5) 

1.126E(-5) 

0.017 

2.417E(-6) 
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Carbon fibres real data sets 

1. The first data consists of the breaking stress of 66 carbon fibres of 50 mm length (GPa) and used 

by Aqtash et al. (2014). The data set: 

0.39 1.61 1.89 2.41 2.55 2.79 2.93 3.11 3.27 3.39 3.75 

0.85 1.61 2.03 2.43 2.56 2.81 2.95 3.15 3.28 3.56 4.20 

1.08 1.69 2.03 2.48 2.59 2.82 2.96 3.15 3.31 3.60 4.38 

1.25 1.80 2.05 2.50 2.67 2.85 2.97 3.19 3.31 3.65 4.42 

1.47 1.84 2.12 2.53 2.73 2.87 3.09 3.22 3.33 3.68 4.70 

1.57 1.87 2.35 2.55 2.74 2.88 3.11 3.22 3.39 3.70 4.90 

 

Table 4 provides the MLEs of parameters of the R, PR and MOPR distributions. The statistics 

measures for distributions are mentioned in Table 5.  

Table 4: The MLEs of parameters for the first data. 

Distribution ̂  ̂  â  

R )(  2.049 - - 

PR ),(   4.850 1.721 - 

MOPR ),,( a  0.901 0.811 5.379 

 

Table 5: Statistics Measures for the first data. 

Distribution lln2−  A* W* L-S K-S P-Value 

R )(  196.42 16.73 15.74 5.07 0.23 0.002 

PR ),(   172.14 10.52 13.57 0.594 0.08 0.763 

MOPR ),,( a  169.431 0.256 0.037 0.225 0.009 1 

Based Table 5, The MOPR distribution has the smallest values of the statistical measures than 

other fitted distributions, so it provides best fit for carbon fibres data. 

2. The second data set consists of the strength data measured in (GPa) of 69 single carbon fibres 

tested under tension at gauge lengths of 20 mm, which reported by Badar and Priest (1982). For 

illustrative purpose, we are considering the same transformed data set as taken by Raqab and 

Kundu (2005). The transformed data set:  

0.312 0.861 1.006 1.140 1.272 1.426 1.514 1.629 1.726 1.821 

0.314 0.865 1.021 1.179 1.274 1.434 1.535 1.633 1.770 1.848 

0.479 0.944 1.027 1.224 1.301 1.435 1.554 1.642 1.773 1.880 

0.552 0.958 1.055 1.240 1.359 1.478 1.566 1.648 1.800 1.954 

0.700 0.966 1.063 1.253 1.382 1.490 1.570 1.684 1.809 2.012 

0.803 0.977 1.098 1.270 1.382 1.511 1.586 1.697 1.818 2.067 

2.084 2.090 2.096 2.128 2.233 2.433 2.585 2.585  

 

Table 6 presentes the MLEs of parameters of the MOPR and competitive distributions. Table 7 

introduced the statistics measures for distributions.  
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Table 6: The MLEs of parameters for the second data. 

Distribution ̂  ̂  â  

R )(  1.083 - - 

PR ),(   1.543 1.623 - 

MOPR ),,( a  0.754 1.052 6.155 

 

Table 7: Statistics Measures for the second data. 

Distribution lln2−  A* W* L-S K-S P-Value 

R )(  118.84 34.49 6.342 0.428 0.19 0.008 

PR ),(   98.06 37.148 6.567 0.48 0.04 0.999 

MOPR ),,( a  97.393 0.153 0.016 0.326 0.013 1 

 

Based on Table 7, MOPR distribution fits the second carbon fibres data set best. In general, From 

the results of the  two datasets proposed MOPR distribution  performs  the  best  distribution  

according  to  the  other  competitive distributions. 

8. Conclusion 
A new three-parameter of the Power Rayleigh distribution based on Marshall olkin generated 

family (1997) called MOPR distribution has been studied in detail. The proposed distribution has 

several sub-models as special cases. Some mathematical properties of the proposed distribution 

accompanied with characterizations based on truncated moments and reverse hazard function are 

discussed. The MOPR parameters are estimated by maximum likelihood method. Simulation 

results are provided to assess the performance of the proposed estimated parameters. Real data sets 

illustrate the flexibility and usefulness of the proposed model with other competitive models. The 

results confirms that the MOPR distribution has better fitting carbon fibers data in comparison of 

sub-models such as PR, and R distribution 
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