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 Statistics is the science that aims to collect and analyze data. In data analysis, 

researchers need to collect all information that serves their study. Using full 

information about the parameter leads to fitting an appropriate model for the 

data that researchers collect. This study aimed to fit a constrained beta regression 

model using prior information (BCML). Mean square error (MSE) has been 

used to justify the new estimator.  Real data and simulation have been done using 

R.4.2.2. Results indicate that the constrained beta regression is better than the 

standard beta regression, where its MSE was less. 

 

1. Introduction 
Prior Information analyzes the data better. Ignoring this prior information may affect the decisions 

made by researchers. This study used the beta regression model because of its importance and 

widely spread. Analyzing data that come in the form of rates or percentages needs distribution that 

its ranges lie between zero and one like a beta regression model (Abonazel and Algamal, 2021), 

(Abonazel et al, 2022a), and (Abonazel et al, 2022b).  If there exists additional information from 

these models about the estimator beta, restricted regression estimators must be used to get a good 

fit. Previous studies like (Abonazel and Algamal, 2021) discuss ridge beta regression to handle 

multicollinearity problems but don't have constrained beta regression. This paper proposes a 

constrained estimator for the regression of the beta model to get more fit of the beta regression 

model. The traditional Maximum likelihood (ML) method has been used to estimate parameters 

with and without the prior information (Constrained estimator). 

ML estimator has been used to check the performance of constrained estimators MSE criteria has 

been used to compare between the traditional beta regression estimator and Beta restricted 

regression estimators. A simulation study and an empirical application have been done to make a 

good decision about the new estimator. Simulation and application results indicate that the Beta 

restricted regression estimator BCML is better than the ML estimator in terms of MSE where its 

MSE was less. 

Section 2 illustrates the beta regression model and its estimation using the ML method. It also 

indicates the BCML estimator. Numerical evaluation has been proposed in Sections 3 and 4 using 

both simulation and real data application. Finally, conclusions have been presented in Section 5. 
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2. Methodology 
ML is introduced in this section. Then the maximum likelihood for beta regression is introduced. 

The constrained linear model has been explained in the next part. Finally, the constrained estimator 

for the beta regression model is discussed with its properties. 

2.1 Model of Beta regression  
Researchers can use the model of beta regression in case their study contains dependent variables 

represented as percentages or ratios. In the case of the dependent variable was continuous and 

ranged from zero to one, the beta regression model exists to estimate parameters and get a good 

estimator for data. It has become popular in many fields as medical studies, for example, the model 

of beta regression can be used to measure the percentage of Diabetes in the blood in medical 

studies. Beta regression was used to study the effect of some independent variables in the case of 

the dependent variable ranging from zero to one. (Ferrari and Cribari-Neto, 2004) introduced the 

beta regression model, a link function used in the model to link between the dependent and 

independent variables. Dispersion measure has been included in the model as a precision 

parameter. The standard form of the model of beta regression has been introduced in this paper; 

where the precision parameter is assumed to be constant across observations. However, it may not 

be constant across observations (Abonazel and Taha, 2021). 

If the random variable y is continuous and ranges between zero and one, y can be considered to 

follow the beta distribution. The probability density function of beta (pdf) can be written as: 

           𝑓(𝑦, 𝜇, 𝜑) =
⌈(𝜑)

⌈(𝜇𝜑)⌈(1−𝜇)𝜑)
𝑦𝜇𝜑−1(1 − 𝑦)𝜑−1(1−𝜇); 0 < 𝜇, 𝑦 < 1 and 𝜑 > 0                      (1) 

where ⌈. is the gamma function, (Bayer and Cribari-Neto, 2017) compute precision parameter 𝜑 

as: 

𝜑 =
1 − 𝜎2

𝜎2
 

The mean and the variance of the random variable y that follows the beta distribution can be written 

as: 

𝐸(𝑦) = 𝜇, 𝑣𝑎𝑟(𝑦) =  𝜇(1 − 𝜇)𝜎2 

where the model of 𝜇𝑖 can be represented as: 

                                   𝑔(𝜇𝑖) = 𝑙𝑜𝑔 (
𝜇𝑖

1−𝜇𝑖
) = 𝑋𝑇𝛽 = η                                                               (2) 

where  𝛽 = (𝛽1, 𝛽2, … , 𝛽𝑝)/ is a (𝑝 x 1)   vector of unknown parameters, η is the linear predictor, 

and 𝑋 is an (𝑛 x 𝑝)  matrix of repressors. 𝑔(. ) is a monotonic differentiable link function used to 

relate the systematic component with the random component. 

2.2  The estimator of Maximum likelihood  
The function of the log-likelihood for the model of beta regression can be written as (Qasim and 

et.al, 2021): 
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𝓵(𝜷) = ∑ 𝓛(𝜇𝑖, 𝜑𝑖; 𝒚𝒊)
𝒏
𝒊=𝟏 = ∑ {𝒍𝒐𝒈⌈(𝜑𝑖) − 𝒍𝒐𝒈⌈(𝜇𝑖𝜑𝑖)  − 𝒍𝒐𝒈⌈((1 − 𝜇𝑖)𝜑𝑖) + (𝜇𝑖𝜑𝑖 −𝒏

𝒊=𝟏

1)𝑙𝑜𝑔(𝑦𝑖) + ((1 − 𝜇𝑖)𝜑𝑖 − 1)𝑙𝑜𝑔(1 − 𝑦𝑖)}                                                                     (3) 

the score function for 𝛽 can be obtained by differentiating the log-likelihood function in Eq. (3) 

as: 

                                           𝑈(𝛽) = 𝜑𝑋/𝑇(𝑦∗ − 𝜇∗),                                                                    (4) 

Such that: 

𝑇 =  𝑑𝑖𝑎𝑔 (
1

𝑔/(𝜇1)
, … ,

1

𝑔/(𝜇𝑛)
) , 𝑦∗ = (𝑦1

∗, … , 𝑦𝑛
∗)/, 𝜇∗ = (𝜇1

∗, … , 𝜇𝑛
∗ )/ , 𝑦𝑖

∗

= 𝑙𝑜𝑔 (
𝑦𝑖

 

1 − 𝑦𝑖
 ) , 𝑎𝑛𝑑 𝜇𝑖

∗ = Ψ(𝜇𝑖𝜑𝑖 − Ψ((1 − 𝜇𝑖) 𝜑𝑖))  

where: Ψ(. ) denoting the digamma function. The Fisher scoring algorithm used for estimating 𝛽 

estimated by (Espinheira, da Silva, and Silva 2015; Espinheira et al. 2019) as: 

𝛽(𝑚+1) = 𝛽(𝑚) + (𝐼(𝛽𝛽)
(𝑚)

)
−1

𝑈𝛽
(𝑚)(𝛽), 

where the score function defined in Eq. (4) is 𝑈𝛽
(𝑚)

 (Espinheira et al, 2019), and 𝐼(𝛽𝛽)
(𝑚)

 is the 

information matrix for 𝛽. The least squares method can be used to get the initial value of 𝛽, while 

the initial value for each precision parameter can be calculated as: 

                                                            𝜑𝑖̂ =
𝜇̂𝑖(1−𝜇̂𝑖)

𝜎̂𝑖
2                                                                     (5) 

where 𝜇̂𝑖  and 𝜎̂𝑖
2 values are obtained from linear regression, the ML estimator of 𝛽 is obtained as: 

                                               𝛽̂𝑀𝐿
 = (𝑋𝑇𝑊̂𝑋)

−1
(𝑋𝑇𝑊̂𝑍)                                                        (6) 

Such that 𝑍 = η̂ + 𝑊̂−1𝑇̂(𝑦∗ − 𝜇∗), and 𝑊̂  = 𝑑𝑖𝑎𝑔(𝑊̂1, … , 𝑊̂𝑛);  

𝑊̂𝑖 = 𝜑𝑖 {Ψ/ (𝜇𝑖𝜑𝑖 + Ψ/((1 − 𝜇𝑖) 𝜑𝑖))}
1

{𝑔/(𝜇̂𝑖 )}2
 

since, 𝑊̂ and 𝑇̂ are the matrices W and T, respectively, evaluated at the ML estimator. The ML 

estimator of 𝛽 is normally distributed with asymptotic mean vectors 𝐸(𝛽̂𝑀𝐿
 ) = 𝛽, and asymptotic 

covariance matrix: 

                                                 𝑐𝑜𝑣(𝛽̂𝑀𝐿
 ) =

1

𝜑
(𝑋/𝑊̂𝑋)

−1
                                                           (7) 

the asymptotic trace of mean squared error (MSE) for the ML estimator can be calculated as: 

                                     𝑀𝑆𝐸(𝛽̂𝑀𝐿
 ) = 𝑡𝑟 [

1

𝜑
(𝑋/𝑊̂𝑋)

−1
] =

1

𝜑
∑

1

𝜆𝑗

𝑝
𝑗=1                                           (8) 

2.3 Linear and ordinary mixed restricted estimator 
The linear regression model takes the form: 

                                                        𝒀𝒏.𝟏 = 𝑿𝒏.𝒑𝜷𝒑.𝟏 + 𝜖𝒏.𝟏                                                          (9) 
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, the ordinary least squares (OLS) estimator of 𝛽 can be written as: 

                                                           𝜷̂ = (𝑿𝑻𝑿)−𝟏𝑿𝑻𝒀                                                          (10) 

It is distributed by normal 𝒩(𝜷, 𝝈𝟐(𝑿𝑻𝑿)−𝟏), where the column vectors in 𝑿 are linearly 

independent. The restricted model for  𝜷̂  can be written as 𝒓 = 𝑹𝜷 where 𝑹 is an 𝒒 x 𝒑 

matrix(𝒒 ≤ 𝒑), and 𝒓 is  𝒒 x 𝟏 vector of restrictions, the restricted parameter 𝜷 
𝑪 using the 

Lagrange function is given by: 

𝐿 = (𝑌 − 𝑋𝛽)𝑇(𝑌 − 𝑋𝛽) + 𝜆(𝑟 − 𝑅𝜷̂ ) 

𝜕

𝜕𝜷̂ 

𝐿 = −2𝑋𝑇𝑌 + 2(𝑋𝑇𝑋) 𝛽 
𝐶 + 𝑅𝑇𝜆 = 0 

𝜕

𝜕𝜆
𝐿 = 𝑟 − 𝑅𝛽 

𝐶 = 0 

𝜆 = −2(𝑅(𝑋𝑇𝑋)−1𝑅𝑇)−1(𝑟 − 𝑅𝛽̂ ) 

 

                                  𝜷 
𝑪 = 𝜷̂ + (𝑿𝑻𝑿)−𝟏𝑹𝑻(𝑅(𝑿𝑻𝑿)−𝟏𝑅𝑇)−1(𝒓 − 𝑹𝜷̂ )                                (11) 

The combination of the LM and the restricted model introduces the Ordinary Mixed Estimator 

(OME) proposed by (Theil and Goldberger, 1961) as follows: 

(
𝑌
𝑟

) = (
𝑋
𝑅

) 𝛽 + (
𝜖
0

)                                                                                                                                   (12) 

where: 𝔼 {(
𝜖
𝜖∗) (𝜖/ 𝜖∗/ )} = 𝜎2 (

𝐼 0
0 0

)  

The OME was unbiased where 𝔼(𝛽̂𝑂𝑀𝐸) = 𝛽, the variance was given by 𝑣𝑎𝑟(𝛽̂𝑂𝑀𝐸) =

𝜎2(𝑋/𝑋 + 𝑅/𝑅)−1 (Abdemegaly, 2019), and the mean square error MSE(𝛽̂𝑂𝑀𝐸) = 𝜎2(𝑋/𝑋 +

𝑅/𝑅)−1.  

2.4  Beta restricted estimator 
In the case of the dependent variable taking percentages, linear model and normal distribution are 

considered to be non-useful to fit the model. According to previous works, no studies have been 

introduced to discuss the constrained model of beta regression. The constrained beta (BCML) 

estimator can be written as using the previous studies: 

             𝜷𝑴𝑳
𝑪 = 𝜷̂𝑴𝑳 + (𝒙∗/𝑾 𝒙∗)−𝟏𝑹∗/(𝑹(𝒙∗/ 

𝑾𝒙∗)−𝟏𝑹/)−𝟏(𝒓 − 𝑹𝜷̂𝑴𝑳)                             (13)                             

To illustrate the main basic steps of the 𝜷𝑴𝑳
𝑪  estimator in eq.13, we need to show the 𝛽̂𝑀𝐿

  estimator 

in eq.6 𝛽̂𝑀𝐿
 = (𝑋/𝑊̂𝑋)

−1
(𝑋/𝑊̂𝑍) since 𝑤̂is symmetric p.d matrix, there is found an orthogonal 

matrix 𝐹 such that 𝑤̂ = 𝐹𝑇𝐹 

𝐿 = (𝑍∗ − 𝑥∗𝛽̂𝑀𝐿)/(𝑍∗ − 𝑥∗𝛽̂𝑀𝐿) + 𝜆(𝑟 − 𝑅𝛽̂𝑀𝐿) 
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𝜕

𝜕𝛽̂𝑀𝐿 

𝐿 = −2𝑥∗/ 
𝑍∗ + 2(𝑥∗/ 

𝑥∗)𝛽𝑀𝐿
𝐶 + 𝑅/𝜆 = 0 

𝜕

𝜕𝜆
𝐿 = 𝑟 − 𝑅𝛽𝑀𝐿

𝐶 = 0 

𝜆 = −2(𝑅(𝑥∗/ 
𝑥∗)−1𝑅/)−1(𝑟 − 𝑅𝛽̂𝑀𝐿 

) 

where 𝑥∗ = 𝐹𝑋, 𝑍∗ = 𝐹𝑍. If (𝑟 − 𝑅𝛽̂𝑀𝐿) = 0, then 𝛽𝑀𝐿
𝐶 = 𝛽̂𝑀𝐿 

2.5 The MSE properties of the BCML estimator 

The BCML was unbiased where 𝔼(𝛽𝑀𝐿
𝐶 ) = 𝛽̂𝑀𝐿, the mean square error is given by 

                                     𝑀𝑆𝐸(𝜷𝑴𝑳
𝑪 ) = 𝑡𝑟 [

1

𝜑
(𝑋/𝑊̂𝑋 + 𝑅/𝑅)

−1
]                                              (14) 

Lemma 2.5.1.    The MSE for the constrained beta regression estimator is always less than the 

traditional one. 

Proof.  since 
1

𝜑
𝑡𝑟(𝑋𝑇𝑊̂𝑋 + 𝑅𝑇𝑅) >

1

𝜑
𝑡𝑟(𝑋𝑇𝑊̂𝑋), so 

1

𝜑
𝑡𝑟(𝑋𝑇𝑊̂𝑋 + 𝑅𝑇𝑅)

−1
<

1

𝜑
𝑡𝑟(𝑋𝑇𝑊̂𝑋)

−1
, then 𝑀𝑆𝐸(𝜷𝑴𝑳

𝑪 ) < 𝑀𝑆𝐸 (𝜷̂𝑴𝑳) 

3. Real data application 
The wellbeing index of Turkey 2015 has been used in this study; the index involves the variables 

that affect on level of happiness, Work, Education, and Environment, have been used in this study. 

As the level of happiness variable lies between zero and one. A better happiness is indicated as the 

values near to one. The Turkish Statistics Association has been used to obtain the data (Aktas¸ and 

Unlu 2017). 

A model of beta regression was done where the dependent variable is the level of happiness. Data 

consists of 41 variables. Table 1 indicates only nine variables that were selected in this study. Table 

1 introduces descriptive measures for the selected variables. Histogram, QQ, PP plot, and 

theoretical CDF have been used to check the goodness of fit measures that are used to fit the data 

to the beta distribution, Figure 1.  indicates that plots show that the dependent variable follows the 

beta distribution. 

The correlation matrix for the selected variables has been done between the independent variables, 

which indicates that all correlation values lie between (0.009 – 0.664), which means that no 

multicollinearity was found in the data. The parameter estimates for the model of beta regression 

using the ML method and constrained maximum likelihood method are indicated in Table 2. The 

constrained method assumes that there was found prior information about the estimators, which 

should be to equal one for its sum (the percentage variable). Eqs. (8) and (14), have been used to 

estimate the MSE of ML and BCML estimators respectively. The results indicate that MSE is 

reduced when we use additional information about estimators. The MSE for the constrained 

estimator is less than The MSE for the traditional one. 
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To judge on the constrained beta regression estimator, relative efficiency (RE) has been calculated 

as it equal 
MSE 𝑀𝐿

MSE BCML
=

5.259

2.724
~ 1.93. This result means that the new method for estimating the 

estimators has half the MSE of the traditional method. 

 

 

Table 1: Description of selected variables. 

Field Variable Symbol Mean Standard 

deviation 

- Level of happiness (%) y 0.612 0.075 

Work Employment rate (%) x1 0.462 0.062 

Average daily earnings (TRY) x2 0.577 0.066 

Job satisfaction rate  (%) x3 0.788 0.065 

Education Net schooling ratio of pre-primary 

education between the ages of 3 and 

5(%) 

x4 0.353 0.062 

Percentage of higher education 

graduates (%) 

x5 0.131 0.023 

Satisfaction rate with public 

education services (%) 

x6 0.741 0.085 

Environment Percentage of households having 

noise problems from the streets (%) 

x7 0.157 0.059 

Satisfaction rate with municipal 

cleaning services (%) 

x8 0.640 0.143 

 

Figure 1: Fitting data to beta distribution 
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Table 2: Estimated MSE values and Parameters of ML and BCML estimators 

Variable ML BCML 

Intercept 0.488 -0.850 

x1 0.460 -0.895 

x2 0.452 -0.346 

x3 0.721 3.261 

x4 0.515 -1.179 

x5 1.776 3.157 

x6 0.495 0.462 

x7 0.593 -1.875 

x8 0.262 -1.082 

MSE 5.259 2.724 
 

  

4. Simulation study 
A simulation study has been done in this section to show the performances of ML with the 

suggested constrained beta estimators BCML. 

4.1 The methodology of the simulation 
The simulation was done using both the model of beta regression, and the constrained model of 

beta regression that indicated in Eq. (2), and Eq. (13) respectively. The data were generated from 

a multivariate normal distribution with a fixed vector of 𝜇 = 0.3, and different types of variance-

covariance matrix. 

The variance-covariance matrix is designed to contain different values of correlation (𝜌) between 

the independent variables (0.2, 0.5, and 0.8). The number of the independent variables was 4 and 

6. The Precision parameter was 2 and 4. In addition, different sample sizes were used 100, 250, 

and 500. MSE and relative efficiency (RE) were the criteria for the performance of ML and BCML. 

Simulation has been done using the following Steps: 

1. Generate dependent variable that follow beta distribution. 

2. Generate independent variables that follow multivariate normal distribution. 

3. Set the prior information (matrix R) which lead to the summation of the coefficient must be 

equal 1. 

4. Estimate traditional beta (𝛽̂𝑀𝐿 ) and calculate its MSE (equations 6-8). 

5. Estimate new beta (BCML) and calculate its MSE (equations 13-14). 

6. Calculate relative efficiency = MSE in step (4) divided by MSE in step (5). 

7. Replicate all previous steps 1000 times. 

8. The average value of the 1000 has been used in the study. 

 

4.2 Relative efficiency 
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Relative efficiency is used to compare performance between the two estimators. (Abonazel and 

Taha, 2021); it can be calculated as: 

𝑅𝐸(𝜷𝑴𝑳
𝑪 ) =

𝑀𝑆𝐸 (𝜷̂𝑴𝑳
 )

𝑀𝑆𝐸 (𝜷𝑴𝑳
𝑪 )

 

 

4.3 Simulation results 
Tables 3–8 indicate the results of the simulation. It shows the MSE for each ML and BCML. It 

also indicates RE for the two estimators. 

 Precision parameter𝜑, the number of independent variables 𝑝, the degrees of correlation 𝜌, and 

the sample size 𝑛, are considered to be the factors that affect the MSE values of the ML  and BCML 

estimators in the simulation 

Table 3: Values of MSE at different cases of both 

ML and BCML estimators when  𝜑 = 2, and 𝑝 = 2 

Table 4: Values of MSE at different cases of both ML  and 

BCML estimators when  𝜑 = 4, and 𝑝 = 2 

Sample size ML BCML RE 

𝝆 = 𝟎. 𝟐 

100 0.203 0.009 24.02 

250 0.074 0.003 21.85 

500 0.036 0.002 21.24 

𝝆 = 𝟎. 𝟓 

100 0.205 0.010 22.41 

250 0.074 0.004 20.36 

500 0.036 0.002 19.66 

𝝆 = 𝟎. 𝟖 

100 0.210 0.018 12.27 

250 0.078 0.007 11.34 

500 0.038 0.003 11.11 
 

Sample size ML BCML RE 

𝝆 = 𝟎. 𝟐 

100 0.778 0.008 100.70 

250 0.286 0.003 91.10 

500 0.138 0.002 87.93 

𝝆 = 𝟎. 𝟓 

100 0.780 0.009 94.70 

250 0.284 0.003 85.62 

500 0.140 0.002 84.39 

𝝆 = 𝟎. 𝟖 

100 0.788 0.016 50.96 

250 0.287 0.006 46.91 

500 0.140 0.003 45.54 
 

 

 

 

Table 5: Values of MSE at different cases of both 

ML  and BCML estimators when  𝜑 = 2, and 𝑝 = 4 

 

 

 

Table 6: Values of MSE at different cases of both ML  

and BCML estimators when  𝜑 = 4, and 𝑝 = 4 

Sample size ML BCML RE 

𝝆 = 𝟎. 𝟐 

100 0.214 0.018 11.97 

250 0.077 0.007 11.15 

500 0.037 0.003 11.01 

𝝆 = 𝟎. 𝟓 

100 0.220 0.022 10.31 

250 0.080 0.008 9.66 

500 0.039 0.004 9.49 

𝝆 = 𝟎. 𝟖 

100 0.248 0.048 5.21 

250 0.090 0.019 4.91 

500 0.044 0.009 4.83 
 

Sample size ML BCML RE 

𝝆 = 𝟎. 𝟐 

100 0.824 0.017 48.84 

250 0.296 0.007 45.67 

500 0.140 0.003 43.86 

𝝆 = 𝟎. 𝟓 

100 0.830 0.020 42.45 

250 0.298 0.008 39.81 

500 0.141 0.004 38.16 

𝝆 = 𝟎. 𝟖 

100 0.854 0.044 19.87 

250 0.308 0.017 18.62 

500 0.146 0.008 17.85 
 



The Egyptian Statistical Journal (ESJ), 68 (1): 15-25 

   
23 

 

Figure 2 indicates the summary of RE values for 54 different cases. Figure 2 indicates the average 

of relative efficiency for the 1000 replications for the two estimators. It can be noticed that relative 

efficiency increases as the number of dependent variables decreases. It also indicates that the RE 

of all cases greater than one which mean (BCML better than traditional ML) 

 

 

 
Table 7: Values of MSE at different cases of both ML  

and BCML estimators when  𝜑 = 2, and 𝑝 = 6 

Table 8: Values of MSE at different cases of both ML  

and BCML estimators when  𝜑 = 4, and 𝑝 = 6 

Sample size ML BCML RE 

𝝆 = 𝟎. 𝟐 

100 0.231 0.028 8.56 

250 0.0814 0.010 7.95 

500 0.039 0.005 7.74 

𝝆 = 𝟎. 𝟓 

100 0.242 0.035 7.07 

250 0.085 0.013 6.57 

500 0.041 0.006 6.40 

𝝆 = 𝟎. 𝟖 

100 0.290 0.081 3.63 

250 0.103 0.030 3.41 

500 0.050 0.015 3.33 
 

Sample size ML BCML RE 

𝝆 = 𝟎. 𝟐 

100 0.853 0.026 33.90 

250 0.293 0.010 30.47 

500 0.143 0.005 30.50 

𝝆 = 𝟎. 𝟓 

100 0.863 0.032 27.63 

250 0.297 0.012 25.03 

500 0.145 0.006 25.02 

𝝆 = 𝟎. 𝟖 

100 0.906 0.073 12.54 

250 0.313 0.028 11.40 

500 0.152 0.013 11.37 
 

 

 

Figure 2: Relative efficiency for different cases. 

 

5. Conclusions 
Prior Information analyzes the data better. Ignoring this prior information may affect the decision 

made by researchers. Therefore, the constrained beta estimator has been introduced in this paper 
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to get more benefit estimators because of all prior information about estimators has been used. The 

constrained beta regression estimator is better than the traditional one in the sense of MSE criteria.  

A simulation experiment with different factors has been done. The results also indicate that the 

constrained beta regression estimator has a lower MSE in all cases, which lead to that all values 

of relative efficiency greater than one (MSE for BCML < the traditional estimator that evaluated 

by maximum likelihood method) this means that the constrained beta regression estimator is more 

useful than the maximum likelihood beta regression. 
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