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ABSTRACT 

 

 

generalized order statistics have been investigated quite extensively in the literature involving ordered 

random variables. As generalized order statistics (GOS) provide a unifying approach to models of 

ordered random variables, we establish here some characterizations on absolutely continuous 

distributions based on GOS which contain and strengthen several known results in this regard. 

Because we do not impose restrictions on the model parameters (as done in the most of previous 

studies), our findings yield new results for various useful models of ordered random variables 

including k-record values, sequential order statistics, and progressively Type-II censored order 

statistics with an arbitrary censoring plan. 

The present paper is devoted to derive some recurrence relations for single and product moments of 

generalized order statistics for Weibull - Weibull distribution (WWD). Based on these recurrence 

relations, some characterizations for this distribution are discussed. 
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1. Introduction 

Characterizations of distributions based on ordered random variables have received considerable 

attention in the literature. Among this, Kamps and Gather (1997), Keseling (1999), Cramer and 

Kamps (2000), Ahsanullah (2000), Ahsanullah (2016), Pawlas and Szynal (2001), Ahmed (2007), 

Ahmed and Fawzy (2007), Khan et al. (2007), AL-Hussaini et al. (2005) and Kumar (2011). Abdul-

Moniem (2019), Nagwa (2020), Alimohammadi (2022), some of them discussed characterizations by 

conditional events of generalized order statistics.  

         The aim of the present article is to provide some characterizations for absolutely continuous 

distributions based on recurrence relations for single and product moments of GOS. In our study, we 

do not want to extend all characterization results in this regard. But, our findings and mathematical 

methods not only yield new characterization results for various useful models of ordered random 

variables but also could be used in different aspects of GOS. 
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    An interesting method of adding a new parameter to an existing G distribution has been proposed 

by Bourguignon et al. (2014). The resulting distribution, known as the Weibull generated distribution, 

includes the original distribution as a special case and gives more flexibility to model various types 

of data.  

Let ( , )G x   be a continuous baseline distribution with density ( , )g x   depends on a parameter vector 

  and the following cumulative distribution function (cdf) of Weibull  

( , , ) 1 ;        0, , 0.xF x e x
        

The cdf of the Weibull– G family is given by 

 
 

 
 1

( , , , ) 1 .
0

G xG x

G xG x xF x x e dx e




    

  
      

        

The reliability function of the Weibull– G family is given by 

 
 

( ) ;

G x

G x
F x e




 

   
             0, , 0x    ,                                         (1) 

where 𝛼 and 𝛽 are the scale and shape parameters, respectively. The probability density function (pdf) 

corresponding to ( )F x  is: 
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    0, , 0,x                          (2) 

Here, ( )G x is denoted as 

( ) e ;                                  0,  , 0,xG x x
                                             (3) 

where   and   are the scale and shape parameters. Substituting from Eq.(3) in Eq.(1), we get 

1

(x) e ;                                0
xe

F x




 
  

                  (4) 

The pdf corresponding to ( )F x  will be as  

 
1 1

1( ) 1 e ;       0
xe

x xf x x e e x




   
  

    
     .                                   (5) 

The distribution in Eq.(5), is called Weibull-Weibull distribution (WWD) as in Bourguignon et al. 

(2014). 

Now in view of  Eq.(4) and Eq.(5), we get 

     1 1

, 0

1 1( )
( )

  !

u v v v

u v

u xf x
F x

u v

 
  



  



   
  

 
 .                                  (6) 

Then distributions can be obtained from Eq.(5), as showed. 

Table 1: Sub Models 

  pdf Distribution 

1    1 1
1 e        0

xex xe e x


  
  

   Weibull- exponential 

2  
 

2

2 2 1 1

1 e        0
xe

x xxe e x


 

 
    
    Weibull- Rayleigh 
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The concept of GOS was introduced by Kamps (1995). A variety of order models of random variables 

is contained in this concept. Let, for simplicity F, throughout denote an absolutely continuous 

distribution function with density function f. 

The random variables  1, , , ,...,X n m k  , , ,X n n m k  are called generalized order statistics based on F, 

if their joint pdf of the form 

       
1 1 1

1 1

i
n n m k

j i i n n
j i

k F x f x F x f x
  

 

         
             
  , 

for    1 1

1 20 ... 1nF x x x F      . with parameters ,  2,  0,n N k k    

 
1

1

1 2 1, ,..., , ,
n

n

n r i
i r

m m m m R M m







   such that 0,r rk n r M       for all  1,2,..., 1 .r n  For 

i j   for all  , 1,2,..., 1i j n  the pdf of  , , ,X r n m k  is given by Cramer and Kamps (2000) in the 

following way 

         
1

1, , ,
1

.
i

r

r iX r n m k
i

f x C f x a r F x
 




                                               (7)             

The joint pdf of  , , ,X r n m k  and  , , ,X s n m k , 1 r s n    is given as 

         
 

 
   

   

   
1, , , , , , ,
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i

i
s r

r r

s i iX r n m k X s n m k
i r i
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      x y ,     (8) 

where   
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It may be noted that for 1 2 1... 1nm m m m       
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and                                                         
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Therefore pdf of  , , ,X r n m k  given in Eq.(7) reduced to 

   
 

     
1 11

, , ,
,   

r rr
mX r n m k

C
f x F x f x g F x x

r

            
 ,                           (11) 

and joint pdf of  , , ,X r n m k  and  , , ,X s n m k ,1 r s n   is given in Eq.(8) reduced to 

     
   

     11

, , , , , , ,
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where 

1

1

,
r

r i

i

C 



   
  1i k n i m     , 

 

 
1

1
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1

1
log ,     1

1
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m

x
m

m
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m
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and  

      1 ,    0,  1m m mg x h x h x   . 

We shall also take  0, , , 0X n m k  . If m = 0, k = 1, then  , , ,X r n m k  reduces to the  1
th

n r   

order statistics, 1:n r nX    from the sample 1 2, ,..., nX X X  and when m = -1, then  , , ,X r n m k  reduces 

to the kth record value (Pawlas and Szynal (2001)). 

The rth generalized TL-moments with 1t  smallest and 2t  largest trimming are defined as follows          

     1 2

1 1 2

1
,

: 1 2

0

11
1 ;     , 1,2,... and 1,2,...,

  

r
kt t

r r k t r t t

k

r
L E X t t r

kr



   



 
    

 
       (13)     

where  
1 1 2:r i t r t tE X      is the expected value of the  1r i t 

th order statistics of the random sample 

of size  1 2r t t  . The case 1 2 0t t   yields the original L-moments defined  by Hosking (1990).  

These relations are obtained in the following sections. 

 

2. Recurrence relation for single Expectations of GOS 

In this section, the single moments of GOS for WWD are obtained.  Moments of order statistics, TL- 

moments and L- moments are obtained as a special case of single moments of GOS. Recurrence 

relations for single moments of GOS are also provided.   

The single moments of GOS for WWD are 
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Using Eq.(4), we get 
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 let 1ra w m      . 

 1

1 1
1 1

1

0 0

e e

r
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  . 

First, to obtain 1I , the binomial expansion is employed as follows 
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Again, the binomial expansion is employed in Eq.(14) as the following 
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So, 1I  is given by 
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From Eq.(14), The single moments of GOS for WWD will be 
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.                 (16) 

which is the expression of single moments of GOS from the WWD. 

2.1 Moments of Upper Order Statistics  

      In this subsection, the single moments of GOS for WWD are obtained  based on Eq.(16). Also, 

numerical values of the mean and variance of upper order statistics for some choices values of 

parameters are calculated.  

      The 
thj  moment of upper order statistics is obtained by taking m=0, k=1 in Eq.(16) as follows 
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Or, by substituting 1n r r   , the  1:

j

n r nE T  
 will be  :

j

r nE T  and takes the following form 
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.                   (17) 

Some values of mean and variance of order statistics for the WWD are calculated for some values of 

parameters in Tables 2 and 3. 

Table 2: Mean of order statistics for WWD 

n r 0.3,  0.5,  0.4      1,  0.3,  0.4      0.5,  0.3,  1      0.5,  0.8,  1      

1 1 38.597 279.001 71.196 1.105 

2 1 

2 

15.431 

61.762 

27.745 

530.258 

13.156 

129.235 

0.595 

1.615 

3 1 

2 

3 

7.992 

30.309 

77.489 

4.787 

73.66 

758.557 

3.741 

31.987 

177.859 

0.392 

1 

1.922 

4 1 

2 

3 

4 

4.692 

17.891 

42.727 

89.076 

1.089 

15.88 

131.441 

967.596 

1.741 

11.04 

52.934 

219.5 

0.285 

0.714 

1.286 

2.135 

5 1 

2 

3 

4 

5 

2.977 

11.552 

27.4 

52.946 

98.109 

0.296 

4.262 

33.308 

196.863 

0.00116 

0.52 

4.463 

20.906 

74.285 

255.804 

0.219 

0.547 

0.965 

1.499 

2.293 

6 1 

2 

3 

4 

5 

6 

1.994 

7.893 

18.872 

35.928 

61.455 

105.439 

0.091 

1.318 

10.148 

56.468 

267.06 

0.001339 

0.226 

1.99 

9.408 

32.405 

95.226 

287.92 

0.175 

0.437 

0.766 

1.164 

1.667 

2.419 

7 1 

2 

3 

4 

5 

6 

7 

1.391 

5.613 

13.592 

25.911 

43.44 

68.66 

111.569 

0.031 

0.452 

3.484 

19.033 

84.545 

340.066 

0.001505 

0.105 

0.951 

4.587 

15.836 

44.831 

115.383 

316.676 

0.144 

0.361 

0.63 

0.948 

1.327 

1.803 

2.521 

8 1 

2 

3 

4 

5 

6 

7 

8 

1.002 

4.116 

10.105 

19.403 

32.42 

50.053 

74.864 

116.813 

0.012 

0.169 

1.303 

7.118 

30.948 

116.702 

414.52 

0.001661 

0.051 

0.479 

2.366 

8.288 

23.384 

57.7 

134.611 

342.685 

0.121 

0.304 

0.53 

0.795 

1.101 

1.462 

1.917 

2.608 
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Note that: the results in Table 2 are consistent with property of order statistics 
: 1:1

1

n

i n

i

n 


    given by 

David and Nagaraja (2003). 

 

For example: based on Table 2. 
2

1:2
1

15.431 6 ,1 7 77. .62 193
i




     

   and,  

1:1 ,38.52 2 7797 .193     

then 
2

1:2 1:1
1

2 ,
i

 


 which justify this property. 

Table 3: Variance of order statistics for WWD 

n r 0.3,  0.5,  0.4      1,  0.3,  0.4      0.5,  0.3,  1      0.5,  0.8,  1      

1 1 0.002046 157.567 0.0002581 0.854 

2 1 

2 

550.461 

0.002469 

17.359 

246.608 

0.002053 

0.0004284 

0.345 

3.842 

3 1 

2 

3 

208.733 

901.881 

0.00251 

3.431 

39.175 

301.001 

318.569 

0.00499 

0.0005467 

0.18 

0.428 

0.766 

4 1 

2 

3 

4 

93.86 

422.695 

0.001073 

0.002452 

0.918 

9.805 

59.94 

336.105 

68.052 

999.091 

0.008104 

0.0006326 

0.107 

0.26 

0.432 

0.697 

5 1 

2 

3 

4 

5 

25.351 

222.576 

572.191 

0.001145 

0.002371 

0.298 

3.098 

17.708 

78.024 

359.681 

17.681 

257.1 

0.00195 

0.0001107 

0.0006972 

0.07 

0.173 

0.286 

0.416 

0.642 

6 1 

2 

3 

4 

5 

6 

25.351 

126.095 

335.186 

663.736 

0.00169 

0.002289 

0.111 

1.14 

6.346 

26.044 

93.254 

375.979 

5.259 

77.196 

580.223 

0.003055 

0.0001376 

0.0007472 

0.048 

0.121 

0.203 

0.29 

0.394 

0.597 

7 1 

2 

3 

4 

5 

6 

7 

14.483 

75.278 

207.672 

418.478 

715.996 

0.001168 

0.002213 

0.046 

0.469 

2.579 

10.295 

34.168 

105.925 

387.481 

1.73 

25.821 

196.191 

0.00102 

0.004221 

0.0001615 

0.0007869 

0.034 

0.089 

0.151 

0.215 

0.284 

0.373 

0.561 

8 1 

2 

3 

4 

5 

6 

7 

8 

8.655 

46.791 

133.841 

276.689 

475.551 

743.666 

0.001156 

0.002144 

0.021 

0.21 

1.149 

4.533 

14.601 

41.755 

116.441 

395.708 

0.615 

9.37 

72.504 

380.421 

0.001546 

0.005385 

0.0001826 

0.0008191 

0.025 

0.067 

0.116 

0.166 

0.218 

0.275 

0.354 

0.53 
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2.2 TL Moments   

     In this subsection, the thr TL- moment and thr L- moment for the WWD are obtained.    

          The thr  TL- moment can be obtained from Eq.(13) and Eq.(17) with 1j  , 1 2n r t t    and 

11n r r k t      as follows: 

 

     

     

1

1 1 2

1

:

0 0 0

1

1 2

1 1

         

1 !( ) 1
                                .

! 1 ! !

n r k t

r k t r t t

w

w

n r k t
E T

w

r t t n r w

n r k t r k t n r w

 

   






 

  

    

   

  


 

    
   

  

      
 

         

 

 

Then, the thr TL- moment of  the WWD is obtained by substituting the previous expectation in 

Eq.(13) as follows.    

Furthermore, the thr  L- moments can be obtained from Eq.(17) with 1 2 0t t   as follows: 

   
   

   

   

     

1

1 2

1
1 21

, 1

0 0 0 01 1

1 2

1

1 1

1
! 1

  

        ! 1 !

1 !( ) 1
               ;     ,

 ! 1 ! !

k

n r k tr
t t

r

k w

w

r
r t t

n r k tk
L

wr n r k t r k t

r t t n r w
t

n r k t r k t n r w



 

   





 

  


    

   

 

 
    

      
       

       
   

          

  

2 1,2,...            (18) 

            and 1,2,...

                                

t

r





  

Furthermore, the thr  L- moments can be obtained from Eq.(18) with 1 2 0t t   as follows: 

 

   

   

   

   

 

1

0 0 0

1

1
! 1

  

        ! 1 !

1 ! 1 1
          .

! ! 1 ! 1

                                

k

r n r k
r

r

k w

w

r

r
r

n r kk
L

wn r k r k

r w m j

n r k r j



 



   

 

   

  



 
  

     
     

        

     

  

                   (19)                              

The first four L-moments can be obtained from Eq.(17) by taking 1,2,3r   and 4  respectively. 

Using Eq.(18), some numerical results for    1 2 1 2, ,

1 2, ,
t t t t

L L    1 2 1 2, ,

3 4 1 2, , , ,
t t t t

L L L L

     1 2 1 2 1 2, , ,

3 4 1 3 4 1 2 3, , , , , ,  and 
t t t t t t

L L        are obtained in Table 4. 

Using Eq.(17), some numerical results for mean and variance of order statistics are

 

obtained in Athar 

and Islam (2004). 
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Table 4: Some numerical results for the thr  L- moments for different values of parameters 

 1 2,t t
  

 
 1,1   2, 2   0,1   0, 2   1,0   2,0   0,0  

0.3

0.5

0.4













 

 1 2,

1

t t
L  30.31 27.4 15.43 7.99 61.76 77.49 38.597 

 1 2,

2

t t
L  12.42 8.53 11.16 6.59 23.59 23.174 23.166 

 1 2,

3

t t
L  3.233 1.736 3.879 2.424 7.171 6.539 8.287 

 1 2,

4

t t
L  0.598 0.224 0.607 0.249 2.48 2.497 2.469 

 1 2,

1

t t
  3.213 

 1 2,

3

t t
  0.204 

 1 2,

4

t t
  0.026 

1

0.3

0.4













 

 1 2,

1

t t
L  3.569 2.633 1.562 0.559 11.679 15.733 6.621 

 1 2,

2

t t
L  2.074 1.23 1.505 0.624 6.082 6.727 5.058 

 1 2,

3

t t
L  1.04 0.521 0.967 0.429 3.102 3.097 3.052 

 1 2,

4

t t
L  0.441 0.185 0.459 0.198 1.542 1.498 1.601 

 1 2,

1

t t
  2.141 

 1 2,

3

t t
  0.423 

 1 2,

4

t t
  0.151 

0.5

0.3

1













 

 1 2,

1

t t
L  31.99 20.91 13.16 3.74 129.24 177.86 71.19 

 1 2,

2

t t
L  20.95 11.49 14.12 4.87 72.94 83.28 58.04 

 1 2,

3

t t
L  12.31 5.92 10.72 4.17 41.56 42.71 39.21 

 1 2,

4

t t
L  6.06 2.51 6.11 2.48 22.80 22.51 23.13 

 1 2,

1

t t
  1.818 

 1 2,

3

t t
  0.514 

 1 2,

4

t t
  0.218 

0.5

0.8

1













 

 1 2,

1

t t
L  1 0.965 0.595 0.392 1.615 1.922 1.105 

 1 2,

2

t t
L  0.286 0.199 0.304 0.215 0.461 0.424 0.51 

 1 2,

3

t t
L  0.039 0.02 0.047 0.03 0.092 0.087 0.105 

 1 2,

4

t t
L  0.008 0.004 0.006 0.0008 0.036 0.036 0.034 

 1 2,

1

t t
  4.848 

 1 2,

3

t t
  0.101 

 1 2,

4

t t
  0.018 
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3.Characterization based on recurrence relation for single moments of GOS 

Theorem 3.1 Let X be a non-negative random variable having an absolutely continuous distribution 

function F(x) with F(0) = 0 and 0 < F(x) < 1 for all x > 0, then 

   

       

, 0

1

1

1
, , , 1, , ,

  

1
                                                 , , , .

!

j j

u vr

u v v

j

j
E X r n m k E X r n m k

u

u
E X r n m k

v


 





 





 

 

 
          

 

 
 
 


                  (20)

 

if and only if  
1ye

F y e




 
  

  . 

Proof  

(i) The necessary proof 

We have from Lemma 2.3 (see, Athar and Islam (2004)) that 

           2
1

, , , 1, , ,
r

r

r i
i

E X r n m k E X r n m k C x a x F x dx
 



  


                   . 

If we let   jx x  , then 

                1

2
1

, , , 1, , ,
r

r
j j j

r i
i

E X r n m k E X r n m k jC x a x F x dx
 








                   .              (21) 

By substituting Eq.(6) in Eq.(21), we get 

   
   

       

1

1

, 0

11

10

1 1
, , , 1, , ,

  !

                                                                     .
r

u v v

j j r

u vr

r
j

i

i

ujC
E X r n m k E X r n m k

u v

x a x F x f x dx



 

  



 





 



   
          

 

  





 

Which after simplification leads to Eq.(20). 

(ii) The sufficient part 

On the other hand if the recurrence relation in equation Eq.(20) is satisfied, then by using Eq.(13), we 

have 
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1
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u
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11 11 21 2

0 0

1
11 11

, 0 0

,
1 ! 2 !

1 1
   .

  1 ! !
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j r j rr r
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u v v v

j rr
m

u vr
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x F x f x g F x dx x F x f x g F x dx

r r

ujC
x F x f x g F x dx

ur v

 

   

 



 
   

  
  



             

   
         

 

 

 

 

Integrating the first term in the left hand side by parts, the expression will be 

 
   

 

           

1 11

0

1
11 11

, 0 0

1 !

1 1

  1 ! !

r

r

j rr
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r

u v v v
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m

u vr

jC
x F x g F x dx

r

ujC
x F x f x g F x dx
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Therefore  

 
   

 
       

11 11

0

1

1 1

, 0

1 !

1 11
                     0. 

  !

rj rr
m

r

u v v v
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x F x g F x

r

u
F x x f x dx

u v



 



  




 

 
 



     

     
   

   





 (22) 

 Now applying a generalization of the Muntz-Szasz theorem (see, Hwang and Lin (1984)) to Eq.(22), 

we get 

 
       

1

1 1

, 0

1 11
0,

  !

u v v v

u v

u
F x x f x
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 Hence, 
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1 1

, 0

1
0

1 11

  !

1
         1 .

  

u v v v

u v

u x
u

u

u
F x x f x

u v

e
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Therefore, 

 
1

1

( )
( ) 1

x
xe f x

F x e
x




 





 


  . 

Integrating both sides from 0 to y, the equation will be as follows 

 

 
 

1
1

0 0

1

y y

x x
f x

dx x e e dx
F x

  
  


   . 

This is implies that 

   ln 1yF y e
 

     , 

where  
1

e ;       0
ye

F y y


 

  
   . 

Corollary 3.2. For 
1 2 1... 1,nm m m m       the recurrence relations for single moment of GOS 

for Weibull- Weibull distribution is given as 

   
       1 1

, 0

1 1
, , , 1, , , , , , .

  !

u v v

jj j

u vr

uj
E X r n m k E X r n m k E X r n m k

u v

  
 







  



   
             

 
   (23) 

Proof. This can easy be deduced from Eq.(20) in view of the relation in Eq.(9). 

Remark 3.1 By putting 0,m  1k   in Theorem 2.1., the recurrence relations for single moments 

of order statistics are obtained as 

   
 

     

 
1

1

: 1: :

, 0

1 1

  1 !

j

u v v

j j

r n r n r n

u v

uj
E X E X E X

un r v

 


 




 










   
   

   
   (24)

 
Remark 3.2 By setting 1,m   1k   in Theorem 2.1., the recurrence relations of upper record values 

are obtained as 

   , , 1,1 1, , 1,1j jE X r n E X r n           

       1 1

, 0

1 1
, , 1,1

  !

u v v

j

u v

uj
E X r n

uk v

  
 







  



   
     

 
 .             (25) 
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4. Characterization based on recurrence relation for product moments of GOS 

Theorem 4.1 Let X be a non-negative random variable having an absolutely continuous distribution 

function F(x) with F(0) = 0 and 0 < F(x) < 1 for all 0xy  , then 
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if and only if.

 

 
1ye

F y e




 
  

  . 

Proof  

(i) The necessary part 

From Lemma 3.2 (see, Athar and Islam [2004]), it can be shown that 
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where      1 2,x y x y   . 

If we let  , i jx y x y  , then 
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On using Eq.(6) , we get 
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, 0 1 1
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1 1

       ( ) .
s

s r

m mh F y h F x F y f y dydx
  

      

 

Which after simplification leads to Eq.(26). 

(ii) The sufficient part 

If the recurrence relation in Eq.(26) is satisfied, then by using Eq.(12), we have 
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By integrating the first term in the left hand side by parts, the expression will be 

   
          

 
   

   
   

1
1 11

0

1

, 0 1

0

1 ! 1 !

1
1

  
                                 

1 ! 1 ! !

        

s

s rmi j rs
m m m

s x

u v v v

s
mu v ji

s x

jC
x y F x f x g F x h F y h F x

r s r

jC u
u

F y dydx x y F x
r s r v

  




 

 

 
 

 




  
  

               

 
  

         

 


 

          
1

1                               .
s r

r

m m mf x g F x h F y h F x f y dydx
 

           

 

This is implies that 
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Now by applying a generalization of the Muntz-Szasz theorem (see, Hwang and Lin (1984)) to 

Eq.(27), we get 
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Integrating both side from 0 to y, we ge 
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This is implies that 
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Remark 4.1 By putting 0,m  1k   in Eq. (26), the recurrence relations for product moments of 

order statistics are obtained as 

, ,

, : , 1:

i j i j

r s n r s nE X E X 
        

   , 1 1

, :

, 0

1

  1 !

v
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 .         (28)      

Remark 4.2 By setting 1m    in Eq. (26), the recurrence relations for product moments of kth record 

values are given as 

           1

i j i j
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r s r sE X X E X X 

   
      

 

       
 1

1

, 0

1
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v
i j
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 .                        (29) 

 

4. Conclusion 

     In this paper, we have studied the characterizations of a distribution called Weibull–Weibull 

distribution based on recurrence relations for single and product moments of generalized order 

statistics. These relations are useful to compute the moments for any value of the parameters. Also, 

the mean and variance of order statistics for the WWD are computed for different values of 

parameters.  
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