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ABSTRACT 

 

 The missing data problem has been broadly studied in the last few decades. Some 

researchers studied estimation and hypothesis testing for different distributions .The contributions 

of the current study was to obtain the estimators parameters of the gamma distribution with 

missing data for one and two populations. The estimators are obtained using the maximum 

likelihood method. To compare the suggested maximum likelihood estimators with estimates that 

might come from various estimation techniques, including the listwise method and the mean 

imputation method, a simulation study has been conducted. A simulation study with three distinct 

percentages of missing values in the data sets: 10%, 20%, and 30% as well as three different 

sample sizes (10, 30, and 50). The estimators' criteria's mean square error (MSE) and the relative 

absolute biases (RAB) were utilized for comparison. The results demonstrated that the use of mean 

imputation or the maximum likelihood method for the scale parameter ( ) but the listwise method 

for the shape parameter (k) is preferred as the percentage of missing data increases. Use the mean 

imputation approach for the scale parameter ( ) as the data set size grows. 
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1. Introduction 

One of the most common problems with data quality is missing values. "Missing data" refers 

to both the total amount of missing data for a single participant and the total amount of missing 

data for a specific variable within a data set. Data loss can occur for a variety of reasons, including 
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application or communication problems, user error in not capturing data, user intention to leave 

fields empty, and errors in data integration. Statistics has always struggled with how to handle 

missing data, but recently it has drawn greater attention. The fundamental cause of the current 

interest in missing data is the challenges presented by surveys and censuses. A remedy, 

nevertheless, hasn't been agreed upon. As a result, researchers have developed a wide range of 

techniques to estimate the unknown parameters of various models when there are missing data, 

including the maximum likelihood method, mean imputation, listwise algorithms, etc. Practically 

speaking, the processes are presumptions that control how well various missing data strategies 

work. In many statistical analyses, especially those related to the social sciences, missing data are 

a persistent and common problem. Therefore, handling missing data is a feature of various 

statistical software (Acock, 2005). Problems with missing data occur in almost all developmental 

research projects. A common approach to the issue of missing data is to delete the cases that 

include those data points. Because it can significantly lower sample size, statisticians have shown 

that this type of approach to addressing missing data is insufficient. Additionally, by generating 

results that are not representative of the population, this reduces power and creates bias. 

Depending on the quantity, causes, patterns, and missingness of the data. Several authors 

estimated parameters and tested distribution parameters when the data is missing e.g [Poisson, 

Bernolli, Binomial, Negative binomial, Exponential and Normal distribution…]. Zhao et al, (2009) 

estimated parameters and tested hypothesis of means of two exponential populations under type I 

censoring sample when data are missing. Zhao(2012) get the parameter estimation and hypothesis 

testing on the equality of two negative binomial distribution populations with missing data. Luo 

(2013) estimated the parameters and tested the hypothesis for two pareto distribution populations 

with partially missing data. See [Kumar et al. (2017) ,Gupta and Grover ( 2017) ,Golden et 

al.(2019) , Nguyen et al.(2021), and Farzandi, et al.(2022)]. 

The structure of this essay is as follows: The introduction is in Section 1, and an overview of 

missing data is in Section 2. Gamma Distribution is described in Section 3. Section 4 introduces 

Estimation of Parameters. Finally, Results and Discussion, and the conclusion are included in 

sections five and six, respectively. 

2. An Overview of Missing Data 

This section's objective is to give a general overview of missing data and approaches for 

handling with it. 
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2.1 Types of Missing Data 

Missing data are errors because the data don’t represent the true values of what the set out 

to measure. Missing values can be of three different types. These types describe relationships 

between measured variables and the probability of missing data. 

2.1.1 Missing not at random (MNAR): Missing data systematically differs from the 

observed values. 

2.1.2 Missing at Random (MAR): Missing data are not randomly distributed, but they are 

accounted for by other observed variables.  

2.1.3 Missing Completely at Random (MCAR): Missing data are randomly distributed 

across the variable and unrelated to other variables. 

 See [Baraldi and Enders (2010)]. 

2.2 Methods of Handling Missing Data 

When the data was absent, several authors calculated and evaluated the distribution 

parameters. Donders et al, (2006) used imputation techniques to handle missing data. Dong and 

Peng (2013) demonstrated three principled missing data methods: multiple imputation, full 

information maximum likelihood, and expectation-maximization algorithm. 

2.2.1  Listwise Deletion or Complete Case Analysis  

The simplest method for handling missing data is listwise deletion. When using this technique, 

cases are removed from the sample if any of the variables in the analysis that will be done have 

missing data. This results in a working sample with no missing data, allowing any statistical 

approach to be used thereafter. Listwise deletion offers two significant statistical qualities in 

addition to being straightforward and generic. First off, listwise deletion won't skew the parameter 

estimates if the data are absent entirely at random. The subsample with complete data, if the data 

are MCAR, is essentially a simple random sample from the main sample. Simple random sampling 

does not introduce bias, as is well known. Second, the listwise deletion standard error estimates 

should roughly represent unbiased estimates of the real standard errors. This is crucial because the 

majority of other conventional approaches' standard error estimations have problems for one 

reason or another. Listwise deletion may result in biassed parameter estimates if data are absent at 

random but not entirely at random. See [Pepinsky  (2018)]. 

2.2.2 Mean Imputation 

https://www.scribbr.com/methodology/random-vs-systematic-error/
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Mean imputation, sometimes referred to as regression-based imputation, is a technique for 

imputed missing data that uses multiple regression modelling to predict values. A multiple 

regression model is calculated on the available cases in which the variable with missing data is 

regressed on other measured variables using all cases with complete data for the regression, for 

instance, if there are several measured variables within a data set and only one has missing data. 

The multiple regression equation's predicted scores are then used to fill in any missing data. Since 

this method uses imputation values from a data analysis model with complete data, it appears to be 

a great way to handle missing data theoretically.However, there are a number of issues with this 

approach. First, because all projected values used for imputation fall exactly on the regression line, 

the imputed data lacks variability. As a result, this strategy generates biassed estimates of variance 

and covariance, as demonstrated by simulation experiments. Second, a univariate pattern of 

missing data is required for regression imputation to be straightforward to apply. Regression 

imputation can be challenging if a data set contains a monotone or random pattern of missing data 

since multiple regression equations must be created for each distinct pattern. See [Jäger et al. 

(2021)]. 

2.2.3 The Maximum Likelihood (ML) Method 

Maximum likelihood determines the parameter values that have the maximum likelihood of 

creating the sample data using all of the available data, both complete and incomplete. In essence, 

the estimation process repeatedly performs log-likelihood calculations while substituting new 

population parameter values into the log-likelihood equation at each iteration. The objective of 

estimating is to determine the specific constellation of estimates that produces the highest log-

likelihood and, thus, the best fit to the data. Each distinct combination of parameter estimations 

produces a different log-likelihood number. The favorable qualities of ML estimators are 

numerous. They are known to be consistent, asymptotically effective, and asymptotically normal 

under a variety of circumstances. Consistency means that in large samples, the estimates are 

roughly unbiased. In order to be efficient, an estimator's true standard errors must be at least as 

minimal as those of any other consistent estimator. Finally, asymptotic normality denotes that 

estimates in repeated sampling have a distribution that is roughly normal (again, the approximation 

gets closer with increasing sample size). Small sample sizes may result in biassed parameter 

estimates when using ML.                          

 The likelihood function with missing data has the form: 



Volume (67) - No.2 -  2023 

54 

 

 ( )  ∏( (    ))
  

 

   

 
(1) 

   ,
                                         (    )   
                                                                         

 
(2) 

      See [ Zhao (2012), Richard et al. (2019)]. 

3-Gamma Distribution 

The probability density function of gamma distribution has the form: 
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See [Giles and feng (2009) and Ke et al. (2023)]. 

4. Estimation of Parameters 

In this section, the maximum likelihood technique is used to produce parameter estimates for the 

one and two gamma distribution populations when some data are missing. 

4.1 For One Population : 

The sample is denoted as (          ) with       are unknown parameters .  

The maximum likelihood method to estimate the parameters of the gamma distribution when data 

are missing is derived.  

The maximum likelihood function has the form: 

 (   )  ∏ ( (      ))
   

                                                  (8) 
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Hence, the logarithm of the likelihood function is given by 
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Solving the equation, it is obtained 

∑ *  
  

  
   

 

 
+ 

                                                 (12) 

∑     
 
      ∑   

 
                                               (13) 

The estimator of parameter   has the form: 
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The estimator of parameter   has the form: 
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4.2 For Two Populations:  

When there are any missing data in the joint likelihood function. The maximum likelihood method 

is used to estimate the parameters of the Gamma distribution for two independent populations. 

4.2.1 For Parameter  :  

Assume that         where θ is unknown, the likelihood function of θ is: 
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4.2.2 For Parameter k:  

Assume          where k is unknown, the observation likelihood function of k is 
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5. Results and Discussion 

The parameters of the gamma distributions were determined by simulation with varied 

sample sizes (10, 30, and 50) and missing data percentages (10%, 20%, and 30%). The parameter 

estimator is produced using the maximum likelihood technique for missing data. For one 

population, equations (14) and (24) are utilised, but equations (34) and (45) are used for two 

populations. The listwise deletion method and mean imputation are also used to compare the 

findings. The chain has 10,000 iterations. True parameters (          ) are utilised for a one 
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population. Assuming that        and         the real parameters for the two gamma 

populations are  (             )  The three techniques' parameter estimators are compared 

using the mean square error and the relative absolute biases (RAB). 

The mean square error and the relative absolute biases are defined as : 

MSE =   E(                    )  (14) 

RAB = 
⌊                    ⌋

          
 (14) 

For one population of the gamma distribution with missing data for various sample sizes, 

the mean square error and the relative absolute biases of the estimators are shown in Tables (1) and 

(2), while the results for two populations are shown in Tables (3) and (4). 

 

Table (1) : The Mean Square Error of Estimators for One Population  

Percentage 

of  Missing 

Sample 

size 

10 30 50 

 Method Maximum 

Likelihood 

Listwise Mean 

Imputation 

Maximum 

Likelihood 

Listwise Mean 

Imputation 

Maximum 

Likelihood 

Listwise Mean 

Imputation 

10%    = 2 0.2239877 0.2286125 0.2235253 0.0721273 0.07631378 0.07423426 0.04563136 0.04400976 0.04365309 

   = 1 0.1666223 0.1449773 0.1530339 0.1990319 0.1012322 0.1143055 0.19156925 0.09369703 0.1065473 

20%    = 2 0.2502455 0.2481877 0.2530886 0.09233464 0.08309125 0.08284736 0.0499313 0.04937415 0.0502388 

   = 1 0.1864223 0.1485909 0.1723748 0.1990319 0.1033932 0.1333416 0.19126975 0.09509053 0.1233568 

30%    = 2 0.2853281 0.2942233 0.2809823 0.09291987 0.09404038 0.09302321 0.05758562 0.05830457 0.057025 

   = 1 0.1965233 0.1612376 0.1898331 0.1990319 0.1081247 0.1508841 0.18155925 0.0965087 0.1408961 

 

 

Table (2) : The Relative Absolute Biases of Estimators for One Population  

Percentage 

of  Missing 

Sample 

size 

10 30 50 

 Method Maximum 

Likelihood 

Listwise Mean 

Imputation 

Maximum 

Likelihood 

Listwise Mean 

Imputation 

Maximum 

Likelihood 

Listwise Mean 

Imputation 

10%    = 2 0.103034 0.105162 0.102822 0.033179 0.035104 0.034148 0.02099 0.020244 0.02008 

   = 1 0.074846 0.06669 0.070396 0.047555 0.046567 0.052581 0.042122 0.043101 0.049012 

20%    = 2 0.115113 0.114166 0.116421 0.039874 0.038222 0.03811 0.022968 0.022712 0.02311 

   = 1 0.069856 0.068352 0.079292 0.052587 0.047561 0.061337 0.047122 0.043742 0.056744 

30%    = 2 0.131251 0.135343 0.129252 0.042743 0.043259 0.042791 0.026489 0.02682 0.026232 

   = 1 0.082846 0.074169 0.087323 0.065355 0.049737 0.069407 0.047152 0.044394 0.064812 
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Table (3) : The Mean Square Error of Estimators for Two Population  

Percentage 

of  Missing 

Sample 

size 

10 30 50 

 Method Maximum 

Likelihood 

Listwise Mean 

Imputation 

Maximum 

Likelihood 

Listwise Mean 

Imputation 

Maximum 

Likelihood 

Listwise Mean 

Imputation 

10%   = 1.5 1.659086 1.667111 1.631403 1.459658 1.464337 1.460161 1.432357 1.424886 1.413819 

  =.75 0.6625628 0.565111 0.6137946 0.5348395 0.5287729 0.5808246 0.5362115 0.5203232 0.5738813 

20%   = 1.5 1.695932 1.700456 1.711938 1.477018 1.480671 1.467662 1.432115 1.42385 1.432312 

  =.75 0.5825638 0.57021 0.6719239 0.5342385 0.5321467 0.6396705 0.616012 0.520483 0.6375328 

30%   = 1.5 1.748196 1.742285 1.758395 1.497167 1.503361 1.479253 1.43112 1.432137 1.432793 

  =.75 0.7625322 0.5811721 0.727947 0.6247294 0.5347349 0.700992 0.5364115 0.5219587 0.6966006 

 

Table (4) : The Relative Absolute Biases of Estimators for One Population  

Percentage 

of  Missing 

Sample 

size 

10 30 50 

 Method Maximum 

Likelihood 

Listwise Mean 

Imputation 

Maximum 

Likelihood 

Listwise Mean 

Imputation 

Maximum 

Likelihood 

Listwise Mean 

Imputation 

10%   = 1.5 0.76318 0.766871 0.750445 0.671443 0.673595 0.671674 0.658884 0.655448 0.650357 

  =.75 0.258779 0.259951 0.282346 0.241426 0.243236 0.267179 0.237365 0.239349 0.263985 

20%   = 1.5 0.780129 0.78221 0.787491 0.679428 0.681109 0.675125 0.658773 0.654971 0.658864 

  =.75 0.258779 0.262297 0.309085 0.24575 0.244787 0.294248 0.237365 0.239422 0.293265 

30%   = 1.5 0.80417 0.801451 0.808862 0.688697 0.691546 0.680456 0.658315 0.658783 0.659085 

  =.75 0.258779 0.267339 0.334856 0.287376 0.245978 0.322456 0.237365 0.240101 0.320436 

 

The results from the tables above can be used to illustrate the following for both the mean 

square error and the relative absolute biases: 

5.1 For Sample Size = 10 . 

When 10% of the data is missing, the mean imputation technique's scale parameter (θ) is 

smaller than the other two techniques' for both the one and the two populations. Nevertheless, the 

listwise elimination approach is the least efficient for the shape parameter (k).  

For all estimator, the mean imputation and maximum likelihood exceed the listwise 

deletion method. Only in two populations is the maximum likelihood technique smaller for the 

scale parameter. when the 20% missing data percentage.  
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The two populations' scale parameter and the one and two populations' shape parameter are 

the lowest for the listwise deletion method. Conversely, the scale parameter for the single 

population has the lowest mean imputation value. when the amount of missing data is 30%. 

5.2 For Sample Size =30 . 

The maximum likelihood method's scale parameter value is at its lowest when the fraction 

of missing data is 10%. On the other hand, the smallest value for the shape parameter is the 

listwise deletion strategy. 

The scale parameter for one population has the lowest value according to the maximum 

likelihood technique.  The mean imputation value is the lowest for two populations. The listwise 

elimination method is the least values for the shape parameter. When missing proportion is 20% 

For the missing percentage of 30%, The maximum likelihood technique has the 

lowest  value for the scale parameter in one population.  For two populations, the imputation mean 

value is lowest. The listwise deletion approach uses the shape parameter's fewest values. 

5.3 For Sample Size = 50 . 

For the missing percentage of 10%, the mean imputation approach is less than the other 

two methods for the scale parameters. While the listwise deletion method has the lowest shape 

parameter value. 

For the20% missing percentage, the listwise deletion approach yields the least values for 

all the parameters. 

For the missing percentage of 30%, One population's scale parameter has the lowest value, 

based on the mean imputation approach.  The maximum likelihood value is lowest for two 

populations. The listwise elimination method yields the shape parameter's lowest values. 

6. Conclusion 

The following are the primary conclusions drawn from the simulation study for both the 

one and two populations: 

1- The three approaches (maximum likelihood method, listwise deletion method, and mean 

imputation) show only slight variations in the mean square error and relative absolute biases. 

2- When one is interested in the scale parameter θ, one should apply the mean imputation strategy. 

Instead, employ the listwise deletion method if you are interested in the shape parameter k. 
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3. As the amount of missing data increases, it is preferable to use the maximum likelihood 

approach or mean imputation for the scale parameter θ. However, for the shape parameter k, it is 

better to employ the listwise deletion method. 

4-For the scale parameter θ, the mean imputation strategy is better as sample size grows, but for 

the shape parameter k, the listwise deletion method is better. 
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