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Abstract

This paper considers the problem of estimating probability density function
based on maximum penalized likelihood estimation, we will review some of the
previous studies on Maximum Penalized Likelihood Estimation (MPLE) approaches.
Finally, a comparative study using maximum penalized likelihood estimation for
reliability parameter based on two-parameter exponential distribution that supported
by simulation study.
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1 Introduction
The maximum penalized likelihood approach was first applied to density estimation
by Good and Gaskins (1971, 1972). They suggested enforcing nonnegative by

operating on the square root of the density y = f "2 and then squaring the result.
They proposed the penalties

&) =a [ a, M)
and
®,(f) =4a [ yidu+p [y (w?duy, 2)

where a and f§ are the smoothing parameters.

De Montricher, Tapia, and Thompson (1975) examined in detail the properties of the
estimators, including existence and uniqueness, and showed that the MPLE based on a
penalty involving derivatives is a spline with knots at the order statistics. Klonias
(1982, 1984) examined a general class of penalized likelihood estimators and
suggested a smoothing parameter (S) based on cross-validation. Cox and O’Sullivan
(1990) provided asymptotic analysis of penalized likelihood estimators.

Penalized likelihood estimation can be viewed as a Bayesian approach, with the prior
for the density having the form exp[—®(f)] and the posterior mode being the final
estimate. Good and Gaskins (1980) used this Bayesian framework to suggest a way to
evaluate the importance of individual modes (“bump-hunting”) through the logarithm
of the Bayes factor on the odds that the bumps would be present in a sample of
infinite size.
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In order to avoid computational difficulties, Scott, Tapia, and Thompson (1980)
converted the penalized likelihood to one on discrete data by binning the observations
(see also Tapia and Thompson, 1978, reprinted in Thompson and Tapia, 1990). They
called this the discrete maximum penalized likelihood estimator (DMPLE) and gave
conditions where the DMPLE converges to the MPLE as the bins narrow. Granville
and Rasson (1995) also proposed binning the observations, and they examined an
‘approximation to the MPLE based on a Taylor series expansion around a uniform set
of binned counts. Ghorai and Rubin (1979), Good and Gaskins (1980), Ishiguro and
Sakamoto (1984), and Klonias and Nash (1987) discussed other MPLE computational
methods.

The methods discussed so far are all derived in an ad hoc way from the definition of a

density. It is interesting to ask whether it is possible to apply standard statistical
techniques, like maximum likelihood, to density estimation. The likelihood of a curve
(g) as density underlying a set of independent identically distributed observations is

given by (see silverman (1986))
L (glX1, ., Xn)=1 121 9CX0) - (3)

This likelihood has no finite maximum over the class of all densities. To see this, let
f, be the naive density estimate with window width 1/2h; then, for each ,

— 1
frn(Xi) = el
and so
[MfAX) = n ™A™ > o as h — 0.

Thus the likelihood can be made arbitrarily large by taking densities approaching the
sum of delta functions w(x) = % ™ 8(x — X;), and it is not possible to use maximum

likelihood directly for density estimation without placing restrictions on the class of
densities over which the likelihood is to be maximized.

There are, nevertheless, possible approaches related to maximum likelihood. One
method is to incorporate into the likelihood a term which describes the roughness in
some sense of the curve under consideration. Suppose R (g) is a functional which
quantifies the roughness of g. One possible choice of such a functional is

R(9) = J_,(9")?*
Define the penalized log likelihood by

La(g) = ?:1 logg(Xl) -« R(g), (4)

where a is a positive smoothing parameter.
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The penalized log likelihood can be seen as a way of quantifying the conflict between
smoothness and goodness-of-fit to the data, since the log likelihood term
¥ log g(X;) measures how well g fits the data. The probability density function f is
said to be a maximum penalized likelihood density estimate if it maximizes
L.(g) over the class of all curves g which satisfy f_mmg =1, g(x) = 0 for all x, and
R(g) < co. The parameter a controls the amount of smoothing since it determines the
rate of exchange between smoothness and goodness-of-fit; the smaller the value of a
the rougher - in terms of R(f) - will be the corresponding maximum penalized
likelihood estimator.

In this paper a review of some previous studies on maximum penalized
likelihood estimation (MPLE) approaches in section 2, section 3 presented the
maximum penalized likelihood estimator for the reliability parameter R based on two-
parameter exponential distribution, simulation results are presented in section 4.

2 Maximum penalized likelihood estimation (MPLE)

A fundamental problem in statistics is to determine the unknown distribution of a
random variable. Consider the following situation: let X be a real valued random
variable with unknown probability density function f assumed to exist. It is required
to construct an estimator f for f based on a sample of n independent observations of
X. Since f 1s not assumed to be known up to the value of a finite dimensional
parameter. Large number of papers on this topic, and many different methods are
used (0 oblain a reasonable estimate for a nonparametric casc.

Given independent observations x;,X,,..,x, of X ~ F | with density f (x) =
d 5 4

E;F(x) on [a,b] (i.e., P [a <X <b] =1) and therefore, x; € [a,b] Vi , —00 < a <
b < oo, the goal is to estimate the true f , or F. Sometimes, we assume that f is

(twice continuously) differentiable, and define

I(x) = log f (2),
and I(x) = -&%l(x) = %, (5)

where [(x) is the score function.
To estimate f (or F or [, equivalently), maximize the penalized likelihood criterion,

maxyer Nimg log f(x;) — AP(f), or maxier Xy L(x) — A0 (D),
(6)

where F and L are appropriate function classes, f: [a,b] — R*, ie., f (x) = 0for
all x, or l: [a,b] — R, respectively, with the property

f; f(t)de = f;e‘(") dt =1, )

Yil(x;) is the log likelihood, ®: £ = R* or ®(f) =d(log f )=P(l) is the
roughness penalty, and A = 0 is the smoothing parameter.

The Egyptian Statistical Journal Vol.60, No.2, 2016




58 A. Mousa , M. Khalil , N. Said , A. Fathi A

Often, the null space of ®, &, :={l | ®(l)=0}, is finite dimensional. This is
especially attractive, since, the limiting case, 4 — oo gives the “most smooth”
solution, which is equivalent to classical Maximum likelihood estimation in &, see,
Silverman (1982,1986), Cox and O’Sullivan (1990) and Gu and Qiu (1993) whom
developed a nice theory, deriving existence and uniqueness results for a wide class of
MPL problems, including speed of convergence and consistency in various norms.

2.1 Penalizing \/f
Good and Gaskins (1971) used the roughness penalty ®,(f) = |

a

information which can be written as ®,(f) = 4f; u’z(t)dt where u = \/]_C A

second proposal was to generalize the problem to penalties () =a f; w2 (t)dt +

/2
B ) dt, the Fisher
O

I f; w2 (t)dt. De Montricher, Tapia and Thompson (1975) derived exact existence

results for the proposed estimators of Good and Gaskins (1971), and were able to
characterize the first one as “exponential spline”, see also Thompson and Tapia
(1990).

However, the resulting curve has “kinks”, since the derivative f* is discontinuous at
every data point (Silverman, 1986). Whereas the minimizer for the &, problem will be
smoother, it is delicate to be computed, because u(x) = 0 is necessary (De
Montricher, Tapia and Thompson (1975)).

The penalty ®4(f) = fcf’ FO*Odt (under fD(@)=fPB)=0 for j =
0,1,...,s — 1) is considered in De Montricher Tapia and Thompson (1975), where
the authors proved the existence and uniqueness, and (for s = 1) provided an
approximating solution, using discretization.

All these approaches have the drawback that the “most smooth” solution is
problematic, since the space {f ; ®(f) = 0; f = 0} is not well characterized or even

degenerate.

2.2 Penalizing log f
Silverman (1982, 1986) introduced the penalty ®(l) = f: l"’z(t) dt and proved the

consistency in three different norms. Silverman also proved that the solution of the
constrained MPL problem (6), (7) is equivalent to solving the unconstrained problem

maxyer nieq L(x) = AP() —n j: elt®dt (8)

for a very general class of penalties.

The choice of penalty here leads to the attractive feature that the smoothest limits
(A — ) are in ®, = {I"” =0} = {l quadratic} which are exactly the Gaussian
distributions and (1 — oo)corresponds to normal MLE. This feature is analogous to
the cubic smoothing splines in regression which leads to least squares linear
regression for(A — o) , and is a property which vastly used kernel density estimates.
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A related from several standpoints very appealing approach is to estimate (and

T

penalize) the score function yp = —1" = :l{—(which is a straight line for a Gaussian).

Cox (1985) introduced and solved a penalized “mean square error” problem for the
score function, and Ng (1994) provided further properties and computational
algorithms.

The logspline approach of Kooperberg and Stone (1991) is an attractive practical
approach for using cubic splines to model the log density. However, it is not an
MPLE, but rather a MLE in carefully chosen space of “regression splines” (splines
with knots determined by the data).

Many authors used MPLE such as Virginie, Daniel and Pierre (2003), used MPLE in
a gamma frailty model, Adelchi and Reinaldo (2012), used MPLE for skew-normal
and skew-t distributions and Mengjie (2013) used MPLE of two parameters
exponential distribution.

3 The maximum penalized likelihood estimator for the reliability
parameter R based on two-parameter exponential distribution

3.1 Two-parameter exponential distribution

Consider a random variable X having two-parameter exponential distribution
EXP(8, i), with probability density function (pdf) given by

le_(x*lu)fa X 2 “'

flx:8,0)= { g 9)

otherwise,

where 6 > 0 is a scale parameter and pu € R is a location parameter, the cumulative
distribution function (CDF) is
£, i <X
F(x)=P[XSx]=fu5e Fdx=1-e & ,x=>u (10)
The two-parameter exponential distribution has many real applications. It can be used
to model the data such as the service time of agents in a system (Queuing Theory), the
time it takes before your next telephone call, the time until a radioactive particle
decays, the distance between mutations on a DNA strand, and the extreme values of
annual snowfall or rainfall. According to Kotz, Lumelskii and Pensky (2003), the case
of the two-parameter exponential distributions is of importance because it allows us to
derive confidence limits for the reliability parameters involving Pareto distributions or
power distributions by means of one-one transformations.

3.2 The stress-strength reliability parameter based on two-parameter
exponential distribution

Let X ~Exponential(6, ;) independently of ¥ ~Exponential(8, ;). That is, the
pdf of X is f(x; 64, 141) and the pdf of Y is f(y; 04, pt2), where f is given in equation
).
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Then the reliability parameter R = P(X >VY) can be expressed as, (see
Krishnamoorthy and Mukherjee (2006))

Ha2—Hy H1-H2
6, P 2] 0,
R=(1——;;+7)1(u1>u2)+(1;1+62 )!(ulsuz) (11)

where I(+) is the indicator function.
There are three cases of the previous equation:

i. If gy =y, then the reliability parameter R = 919:92
B2y
ii. If uy >, then the reliability parameter R = 1 — 82;1+222
B
iii. If u; < p, then the reliability parameter R = %

3.3 A maximum penalized likelihood estimation for reliability
parameter R

Let X be an exponential random variable with pdf f(x; 61, 1) and Y be an
exponential random variable with pdf f(y; 0, 4z), where the pdf’s are as defined in
equation (9). Assume that X and Yare independent. Let xy,..., X be a sample of
observations on X and ¥, ...,V be a sample of observations on Y. Furthermore, let
6,, i, denote the MPLE of 6y, respectively based on X observations, and let
8, , fi, denote the MPLE of 0,, i, respectively based on Y observations.

To find the MPLE of R, we use the following algorithm:

1) Fori.id sample xy,..., X, and i.i.d sample yy,..., Y, with pdf’s as (9), the
penalized likelihood function is (see Mengjie (2013))

n m
L(0y, 0,111, 42) = (xay — 1) Yy — ) Hf(xil 01, 11) nf(le 6, 12)
i=1 =1

I X e o T | _Lym oy
Z(x(l) _“1)(}/(1) —HZ)Q_I’fe gy Zi=1XimH1 'é‘;ﬁe 5; Li=10Vj—#2
X1y Z My Yy Z K2 (12)

where xX(1) < X(2) < = X(n) ar€ order statistics based on X, X5,...,Xn
and X(;) is the minimum of the sample, Yy =Y(@) = < Y(m) are order statistics
based on y, ¥z,..., ¥m and Y(qy is the minimum of the sample.
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2) Take the logarithm of likelihood function, we have,

n
1
InL(6y, 0, uy, ttp) = 1n(x(1) - H1) —ningy —= ) (%= 1)
6, L.

m =
1
+1In(yqy — p2) —mlInd, —BTZZ()’;' — Uz)
=1

X(1) = H1s V() = 2

(13)

3) Differentiate the logarithm of the likelihood function with respect to

0., 0., i1, U respectively, and set the derivatives equal to 0.

dinL(0y, 051 p2) _ 1 Rima(i— i) _

de, 8, 6,°
dIn L6y, 0,, p1, 12) __.m + Yiz1(Yi = Ha) _
de, 8, 6,>
dInL(8,,6; u,14) T 1 =it
duy 01 Xy —th
dlIn L(Blt 92! Hy, #2) _ m 1 =0
Ay 02 Yy —Ha2

4) The MPLEs for 84, 0,, py, i1, are

~ n(x—-xcyy)
91 - (1)
n-1
5. = mMOYw)
2 m-—1
PO TJ.X(]_)—JC
2 e
. my)~y
H2 = m—1

0

0

(14)
(15)
(16)
(17)

5) The MPLE of the reliability parameter R can be obtained by replacing the
parameters 64,0, iy, 4, in R by their MPLE’s. That is, the MPLE of R is

given by
Ba—l3 15 Tl 7}
N B.,e B2 R R Bie © A N
R=[1-= (> i) + | o |1 < o)
1 2

8,46,

(18)
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3.4 A maximum likelihood estimation for reliability parameter R
Let X be an exponential random variable with pdf f(x;6y,p,) and Y be an
exponential random variable with pdf f(y; 0z, ), where the pdf’s are as defined in
equation (9). Assume that X and Yare independent. Let x;,..., X, be a sample of
observations on X and y,,..., ¥ be a sample of observations on Y. Furthermore, let
91*,;21* denote the MLE of 6y, respectively based on X observations, and let
9}* , i, denote the MLE of 8, u, respectively based on Y observations.
To find the MLE of R, we use the following algorithm:

1) For iid sample xy,...,%, and Li.d sample y;,...,¥m with pdf’s as (9), the

likelihood function is (see Mengjie (2013))

mn m
L*(0,, 6y, py, 12) = l—[f(xsl 61, 141) Hf(y;l 02, 12)
=1 j=1

— Hln CHE}IZ?:!L(X[“#I) 'é'}}ﬁ C‘éﬂ}ll(yj—.uz)
1 2
yX(1) Z M1y V(1) = Ha
(19)

2) Take the logarithm of likelihood function, we have,

n m
1 1

In L*(04,8;, 41, 42) = —nlnb, - —évZ(x[- — i) —miné, —9—2~Z(yj — U3)
1i:l Jj=1

yX(1) 2 H15 V) = Ha (20)
3) Differentiate the logarithm of the likelihood function with respect to
0,,0,, 111, |1, respectively, by taking f1," = x(1y , 2" =¥y and set the
derivatives equal to 0.

d In L* (81,04, i1, 2) _ _n + Y= (X — #) i)
do, 6, 6,>
dinL* (01,02 p0,k2) _ M Lia0i—#2) _

0
de, 0, 6,°

4) The MLEs for pq, pp, 64, 0, are

"= X(1) (21)
fiy" = Y (22)
B, =% —xq (23)
b, =7 —ya (24)
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5) The MLE of the reliability parameter R can be obtained by replacing the
parameters 6, 85, iy, 4, in R by their MLE’s. That is, the MLE of R is given
by

< v
By —-f2
= N £

5 * P ~ K g 1
R" = 1—7—5—:— [(a," > g, ) + he B

1 +6: 6y +6;

10" < ")

)| D

(25)

4 Simulation Study

A simulation study was carried out and designed to investigate the performance of the
MPLE of the reliability parameter R when p; > y, by compare it with the MLE of
the reliability parameter R.

The data were generated according to two-parameter exponential distribution for
sample sizes (n,m) where n= 30,70,90,120 and m = 30,70,90,120. All
computations are performed using Mathematical0 as follows:

1. For given parameters compute the true value of R, (see equation 1 1)

2. Compute MLE and MPLE for parameters.

3. From the invariance property of the maximum estimator, compute MLE and
MPLE for R. .

4. Repeat step 2 and 3 where the simulation is repeated 1000 times and biases
and mean square errors are calculated for each estimator.

Table (1), Table (2), Table (3), Table (4), Table (5) and Table (6) shows the results of
a simulation study.

Bi . : ; . .
Note that, R.B(1) = ——%% _ isRelative Bias with respect to estimator ,
Estimator
Bi . . . .
R.B(2) = % s Relative Bias with respect to true value and
true value
M MPLE . . . 3
R.E =MSEOS MPLE ¢ Relative Efficiency with respect to MLE.
MSE of MLE

The results from this simulation according to biases and mean square errors of MPLE
of R is smaller than biases and mean square errors of MLE of R for all sizes (n, m), so
the MPLE of R is better than the MLE of R.
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Table (1)
Biases and MSE when ( g; = 0.5, p; =0, 8, =1, 6, = 1 and true value of
R=0.696735) for MLE of R

Sample MLE
Sizes of
" R Bias R.B(1) R.B(2) MSE
(30,30) 0.99979 0.30306 0.30312 0.43497 0.09184
(30,70) 0.99940 0.30266 0.30284 0.43440 0.09161
(30,90) 0.99973 0.30299 0.30307 0.43487 0.09181
(30,120) 0.99918 0.30244 0.30269 0.43408 0.09147
(70,70) 0.99927 | 0.30253 0.30275 043421 | 0.09153
(70,90) 0.99965 0.30291 0.30302 0.43476 0.09176
(70,120) 0.99777 0.30103 0.30170 0.43206 0.09062
(90,90) 0.99853 0.30179 0.30223 0.43315 0.09108
(90,120) 0.99911 0.30237 0.30264 0.43398 0.09143
(120,120) 0.99849 0.30175 0.30221 0.43309 0.09106
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Table (2)
Biases and MSE when ( ¢y = 0.5, 4, =0, 6, =1, 8, = 1 and true value of

R=0.696735) for MPLE of R

Sample MPLE
Sizes of
m R Bias R.B(1) R.B(2) MSE
(30,30) 0.99973 0.30299 0.30307 0.43487 0.09181
(30,70) 0.99934 0.30260 0.30280 0.43431 0.09157
(30,90) 0.99971 0.30297 0.30306 0.43484 0.09179
(30,120) 0.99912 0.30239 0.30266 0.43401 0.09144
(70,70) 0.99920 0.30247 0.30271 0.43412 0.09149
(70,90) 0.99962 0.30289 0.30301 0.43473 0.09174
(70,120) 0.99766 0.30093 0.30164 0.43191 0.09056
(90,90) 0.99843 0.30169 0.30216 0.43301 0.09102
(90,120) 0.99906 0.30233 0.30261 0.43392 0.09140
(120,120) 0.99842 0.30168 0.30216 0.43299 0.09101
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Table (3)

Comparison between MLE and MPLE of R when ( ¢y = 0.5, [y = 0,

6, = 1, 6, = 1 and true value of R=0.696735)

MLE MPLE MLE MPLE

R.B(1) R.B(1) R.B(2) R.B(2) R.E
0.30312 0.30307 0.43497 0.43487 0.99967
0.30284 0.30280 0.43440 0.43431 0.99956
0.30307 0.30306 0.43487 0.43484 0.99978
0.30269 0.30266 0.43408 0.43401 0.99967
0.30275 0.30271 0.43421 0.43412 0.99956
0.30302 0.30301 0.43476 0.43473 0.99978
0.30170 0.30164 0.43206 0.43191 0.99934
0.30223 0.30216 0.43315 0.43301 0.99934
0.30264 0.30261 0.43398 0.43392 0.99967
0.30221 0.30216 0.43309 0.43299 0.99945
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Table (4)
Biases and MSE when (g =1, y, =0, 8, =0.5, 8, = 1 and true
value of R=0.754747) for MLE of R

Sample MLE
Sizes of

(n, m) R Bias R.B(1) R.B(2) MSE

(30,30) 0.99977 0.24502 0.24508 0.32464 0.06004

(30,70) 0.99923 0.24449 0.24468 0.32394 0.05977

(30,90) 0.99904 0.24429 0.24452 0.32367 0.05968
(30,120) 0.99852 0.24377 0.24413 0.32298 0.05942
(70,70) 0.99930 0.24456 0.24473 0.32403 0.05981
(70,90) 0.99938 0.24464 0.24479 0.32414 0.05985
(70,120) . 0.99898 0.24424 0.24449 0.32361 0.05965
(90,90) 0.99805 0.24330 0.24378 0.32236 0.05920
(90,120) 0.99842 0.24367 0.244006 0.32285 0.05937
(120,120) 0.99798 | 024323 0.24372 0.32227 0.05916
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Table (5)
Biases and MSE when (4 = 1, u, =0, 6; = 0.5, 6, = 1 and true
value of R=0.754747) for MPLE of R
Sample | MPLE |
Sizes of
(n, m) R Bias R.B(1) R.B(2) MSE
(30,30) 0.99971 0.24496 0.24503 0.32455 0.06000
(30,70) 0.99916 0.24441 0.24462 0.32383 0.05974
(30,90) 0.99897 0.24422 0.24447 0.32358 0.05965
(30,120) 0.99844 0.24370 0.24408 0.32289 0.05939
(70,70) 0.99924 0.24449 0.24468 0.32394 0.05978
(70,90) 0.99934 0.24459 0.24475 0.32407 0.05982
(70,120) 0.99893 0.24418 0.24444 0.32353 0.05963
(90,90) 0.99793 0.24318 0.24368 0.32220 0.05914
(90,120) 0.99834 0.24359 0.24400 0.32274 0.05934
(120,120) 0.99789 0.24314 0.24365 0.32215 0.05912
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Table (6)
Comparison between MLE and MPLE of R when (p, =1, ¢, =0,
8, = 0.5, 8, = 1 and true value of R=0.754747)

MLE MPLE MLE MPLE

R.B(1) R.B(1) R.B(2) R.B(2) R.E
0.24508 0.24503 0.32464 0.32455 0.99933
0.24468 0.24462 0.32394 0.32383 0.99950
0.24452 0.24447 0.32367 0.32358 0.99949
0.24413 0.24408 0.32298 0.32289 0.99949
0.24473 0.24468 0.32403 0.32394 0.99950
0.24479 0.24475 0.32414 0.32407 0.99950
0.24449 0.24444 0.32361 0.32353 0.99966
0.24378 0.24368 0.32236 0.32220 0.99899
0.24406 0.24400 0.32285 0.32274 0.99949
0.24372 0.24365 0.32227 0.32215 0.99932
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