THE EGYPTIAN STATISTICAL JOURNAL
ISSR, CAIRO UNIV. VOL.39 NO. 2,1995

VARIANCE UPPER BOUNDS AND A
PROBABILITY INEQUALITY FOR
DISCRETE a-UNIMODALITY

A. F. Mashhour
Department of Mathematics, Faculty of Science,
Mansoura University, Mansoura,

EGYPT.

Abstract

Vartance upper bounds for discrete a-unimodal distributions defined on
finite support are established. These bounds depend on the support and
‘the unimodality indez . It is noted that the upper bounds sncrease as
' the unimodality indez o increases. More information about the underlying
distributions yields tighgter upper bounds for the variance. A parameter-
free Bernstein-type upper bound is derived for the probability that the sum
S of ni independent and identically distributed discrete a-unimodal random
variables ezceeds its mean E(S) by the positive value nt. The bound for
P{S —nu > nt} depends on the range of the summands, the sample size n,
'!hc unimodality indez a and the positive number t.

I Introduction

Unimodality concept of distributions are well known for continuous case.
Dishen and Savage (1970) generalized this concept to a- unimodality. They
efined continuous random variable (r.v.) X as a-unimodal (about the
ﬂgm) a > 0, if and only if (iff), there exists some r.v. Y such that

< U'/a.Y, where U is a uniform r.v. on (0,1) independent of Y.
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a-unimodal distributions have been further studied by many authors, see,
Aboummoh and Mashhour (1983), Alamatsaz (1985), Dharmadhikari and
Jogdeo (1986) and references therein.

Upper bounds on variance represent an important target, since they
have applications in many areas of statistics such as variance estimation and
stochastic process, see Dharamadhikari and Joag-Dev (1989) and references
therein. They proved that if X is a continuous r.v. having a-unimodal
distribution about M, 0 < X <1, and g = E(X), then

(a+2)Var(X) < ula+1+2M) — (a+ 2)pu* - M. (1.1)

Among other results they show that the upper bound for the variance of an
a-unimodal distribution on [0, 1] is (a+1)?/4(a+2)? which yield Jacobson’s
bound of 1/9 when a = 1, see Jocobson (1969).

For continuous independent and identically distributed (i.i.d.) unimodal
r.v.’s X;, X, ..., X, with bounded support, Young et al. (1988) have de-
rived a parameter-free Berstein upper bound for P{S — nu > nt}, where"
S =3 X

Abouammoh et al. (1994) have defined the discrete a-unimodality con-
cept for @ > 0 as

Definition (1.1): A discrete r.v. X is called a-unimodal about a, a € I,
if its probability mass function (p.m.f.) (pa)%®,,, satisfies

(a—n+a)p, > (1 —n+a)pa_: n < a,

(a+n—a)p, > (1 +n—a)pps1 n>a.

It is noted that if (p,)®, is a-unimodal about a, § > a, then (pn)Z,
is #-unimodal about a. Consequently all a-unimodal distributions with
a < 1, describe the unimodal distributions. For a > 1, they introduced the
characterization.

Theorem 1.1: The p.m.f. (p,)®,, with characteristic function (ch. fn.)

p(t) is a-unimodal about n = a, ;ﬂo'o,
a(t) = {a + a(1 — ") }p(t) +i(1 — ¢*)p'(t)]/a, (1.2)
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md - | . .
r(t) = [{a+a(e™ - 1)}p(t) +i(e™™ - 1)p'(t)]/ e, (1.3)
are ch. fns.

Also, Abouammoh and Mashhour (1994), haved proved that if the
r.v. X has discrete c-unimodal distribution about @, defined on support
{0,1,2,..., N}, with mean u, then

(¢+2)Var(X) < —(a+2)u? +[(a+1)N+2a]u Na+a[m1n{u,(N 21)}])
1.4
This is a discrete version of (1.1).

For any discrete r.v. defined on the support {0,1,2,..., N} with mean
#, Muilwijk (1966) showed that Var(X) < (N — p)u. The right side be-
comes maximum for variations of iz, when u = N/2. Hence, if the end
points of the support of any discrete r.v. are known, an upper bound for
its variance may be found as

Var(X) < N*/4 (1.5)

It may be noted that the equality holds, when X assumes the values 0

or N each with probability 1/2. Thus, the value —1%: represent the max-

imum upper bound for the variance of any discrete r.v. on the support
{0,1,2,...,N}.

The purpose of the present article is twofold. First, in section 2, we ex-
tend the result (1.4) due to Abouammoh and Mashhour (1994), to establish
upper bounds for the variance of discrete a-unimodal r.v.’s; sharper than
that given by (1.5). These upper bounds are discrete versions for their con-
tinuous counterpart due to Dharmadhikari and Joag-Dev (1989). The new
results, with a = 1, yield some interesting upper bounds for the variance
of discrete unimodal r.vs. on finite supports. The later case, with a = 1,
<orresponds to results due to Young et al. (1988) in the continuous case.
Next, in Section 3, our results of Section 2, are applied to get upper bound
for P{S — nu > nt} when the X;’s are discrete i.i.d. a-unimodal r.vs.
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2 VARIANCE UPPER BOUNDS

Let X be a discrete r.v. on the support {0,1,2,...,N}. The case when
N =1, implies that X is strongly unimodal r.v. . Furthermore, it assumes
only the values 0 or 1 with probabilities ¢ and p respectively, p+q = 1. One
may easily deduce that Var(X) = pg < 1/4, where the equality holds when
p = ¢ = 1/2. Therefore, our results henceforth will be devoted mainly for
N 2> 2. Assume that X has an o-unimodal, @ > 1, distribution about the
modal value a. By virtue of Theorem 1.1, let X; and X; be the discrete
r.v.’s whose ch. fns. are q(t) and r(t) respectively. One can easily show
that X; and X, are defined on the supports S, = {0,1,2,...,N +1} and
S; = {-1,0,..., N} respectively. Put u; = E(X)) and pu; = E(X;). Then
the ch. fns. ¢(t) and r(t) given by (1.2) and (1.3) yield

m = gy = [(a+ 1)p — a]/a. (2.1)

In view of the fact that S, is non-negative and the support {—-N—1,—-N,—-N +
1,...,0} of X;—N is non-positive, one may deduce that u; > 0and u; < N.

Hence the expectation u = E(X) must satisfy
ef(a+1)<p<(a+Na)/(a+1). (2.2)
On the other hand (1.4) may be written in the form
(@ +2)Var(X) < —(a+2)u’ + [(a+ 1)N + 2a)u — Na + aN/2, (2.3)
since min{u, (N — u)} S N/2.
The right side of (2.3) attains its maximum when
p=|(a+1)N + 2a)/2(a + 2). (2.4)

It is noted that the value of u given by (2.4) satisfies the restriction (2.2),
iff a’ + 2a > |2a/N - 1|. Thus, obviously the later condition is satisfied for
all a > 1. :

Based on the above discussion, one may substitute for p from (2.4) into
(2.3) to get '
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Theorem 2.1: If X is discrete a-unimodal r.v. about a on the support
{0,1,2,...,N}, then |
N*a+1)*—4a(N-a)  aN

Var(X) < 4(a + 2)? etz

(2.5)

Theorem 2.2: Let X be a discrete a-unimodal r.v. about a on the support
{0,1,2,...,N}.

a) fa=0o0ra=N, then
N*(a+1)? aN

VarlX) S Gt seg (2.6)
b) If N is even and a = N/2, then
Var(X) < “fo ;)2). (2.7)
¢) I N is odd and a = (N  1)/2, then
Var(x) < 2V +2) 1 (2.8)

Hat2) dat2r

Proof: Part (a) is immediate from Theorem 2.1, when it is recalled that
- bound (2.5) become maximum when a = 0 or N. Part (b) and part (c)
. follows by setting a = N/2 and a = N(+1)/2 respectively in (2.5).

Also setting u = N/2 in (2.3) yield the same upper bound (2.7), what-
ever the corresponding model value a.
Theorem 2.3: Let X be a discrete a-unimodal r.v. about some mode on
the support {0,1,2,...,N}. f p = E(X) = N/2, then
| aN(N +2)
4(a+2)

For a = 1, the p.m.f. (p,) is unimodal on the support {0,1,2,..., N}, and
one get

. | Var(X) <

(2.9)

Corollary 2.4: Let the p.m.f. (p,) has mode a and variance o2, then

5
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a)
o’ < N*/9 + NJ/e, (2.10)
ifa=0o0ra=N.
b)
o < (1/9)[N? — a(N — a)] + N/s, (2.11)
foranya,1<a< N -1.
c) :
o* < N*/12 + N/6 = Var(U), (2.12)

if N is even and a = N/2, where U is the discrete r.v. uniformly
distributed on the same support.

d)
o < (N +1)*/12, (2.13)
if N is odd and a = (N £ 1)/2.

Corollary 2.5: If the p.m.f. (p,) is unimodal such that its mean u = N/ 2,
then

o? < N*/12 + N/e. (2.14)

Note that (2.10) represent the discrete version of Jacobson Theorem (1969).
Moreover (2.12) is the discrete version of a result due to Seaman et al.
(1987). Abouammoh and Mashhour (1994) have introduced some different
restrictions on the mean and the mode which guarantee the upper bound
(2.12) and (2.14).

Remark 1: For a = 1, it is noted that the upper bounds (2.10), (2.11),
(2.12) and (2.13) are at least as sharp as the bound N?/4 given by (1.5).
Thus, the unimodality property of X yield lower upper bounds for its vari-
ance. As a get larger than one, the situation is quite different. Regarding
that (2.6) is increasing in a, it is not expected that the bound (2.6) will be
less than N?/4 for all values of a. Investigation of the bounds (2.6) and
(2.7) show that both are less than N?/4 when a < N. consequently, as
N get larger our results assign for more a-unimodal r.v.’s on the support
{0,1,2,..., N} sharp upper bounds for their variances. Practically, free-
parameterr upper bounds are established based on the known information
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about X. For instance, if the only known information about X is that, it
is a-unimodal about a specified mode and @ < N, our results yield sharper
upper bounds than ﬂ‘i, as given by (2.6), (2.7) and (2.8). Otherwise, when
a 2 N, the only available upper bound is N?/4 which describe the case of
any discrete r.v. on the same support.

. 3 PROBABILITY INEQUALITY

Let X;, Xa,..., X, be i.i.d discrete a-unimodal r.v.’s where X; has the
support {0,1,2,...,N} with E(X;) = p and Var(X;) = o®. Let § =
X1+ X2+:--+ X, and X = S/n. We derive a parameter-free upper bound
for the probability

P{X —p>1t} = P{S—E(S)>nt}, (3.1)
where t > 0.

One method employed to derive a new inequality is attributed to S. N.

Bernstein (see Young et al. (1989) and references therein). According to
that method

P(S - nu > nt} < Elexp{e(S — nu — nt)}),
for any positive constant ¢. Since the X;’s are independent
Elexp{c(S — np — nt)}} = exp(—cnt)n’,Elexp{c(X; — u)}},
where ¢ > 0. The new upper bound is derived by bounding
Elexp{e(X; — u)}], (3.2)

from above and then minimizing the resulting bound with respect to c.
The following Lemma uses results of Theorem (2.1) and Theorem (2.2) to
establish an upper bound on (3.2).

Lemma 3.1: Let X be a discrete a-unimodal r.v. about a, with mean u
and variance o?, on the support {0,1,...,N}. Let Z = X — u, then

Elexp{c(X; — u)}] < exp[@{exp(cN) — cN - 1}],

7
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where ¢ is an arbitrary positive constant and 8 = 6(a,a, N) represent an
upper bound for (o/N)2.

Proof:

Elexp(eZ)] =1+ ic"E(Z')/r!

r=2

o0
<1+ Zc'azN'"z/r!

—1+——Z (eN)"/r!
r=2

=1+ —[exp(cN) —¢cN - 1]

<1+ 0[exp(cN) —¢N - 1]
< exp[f{exp(cN) — ecN —1}].

Now, we establish the main results for the case of i.i.d. discrete a-unimodal
r.v.’s with finite support. '

Theorem 3.2: Let X;,X,,...,X, be i.i.d. discrete a-unimodal r.v.’s on
the support {0,1,2,...,N}. Let E(X;) =pand S = X; + X3+ --: + Xa.
Then

P{S —np>nt} < exp{nﬁt - (r_z_t_ + nb)in(l1 +t/N6)} (3.3)

N
where ( ) ( )
a+ 1) —4a(N —a a
0 =0(a,a,N) = , 3.4
(2,a,N) 4(a + 2)? Y ar 2N (34)
when X; is a-unimodal about the specified mode a, and
2
6 = 6(c,N) = L2tV a (3.5)

+ ’
4(a+2)? 2a+2)N
when X, is a-unimodal about some mode such that u = N/2.

Proof: Let Z; = X; — u. Then for any positive constant ¢

P{S — nu > nt} < Elexp{¢(S — nu — nt)}|
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IN

exp(—nct). If[l Elexp(c3,))
< exp|(—nct) + no{exp(cN) — cN — 1},

from Lemma (3.1).
Let g(¢) = n[—ct + 0{exp(cN) — ¢N — 1}]. Then g(¢) is minimized at
¢’ = (1/N)in(1 + t/N6). Hence the result.

- Corollary (3.3): Let X be a discrete a-unimodal r.v. on the support
{0,1,2,...,N}, then for any ¢t > 0

P{X - > t} < exp{t/N — (¢/N + 6)in(1 + t/N6)} (3.6)

where 8 is given by (3.4) or (3.5). of Theorem 3.2.

Note that the upper bound in (3.6) does not depend on any parameter
of X other than the range NV, the unimodality index a and the mode value
a. This feature makes (3.6) very applicable in real-data situation.

Remark (2): If X is a discrete r.v. on the support {0,1,...,N} then it
can be noted that (3.3) holds with n =1 and § = 1. That is

P{X -2t} Sexp{t/N = (t/N + in(1 +4t/N)}.  (37)

Finally, inequality (2.2) seems to be interesting in the following sense

i) It provides lower and upper bounds for the mean of any discrete
a-unimodal r.v., a > 1, about a modal value a on the support
{0,1,...,N}. Also, it represents a discrete version for its most recent
continuous counterpart due to Dharmadhikari and Joag-Dev (1989).

ii) As a consequence of (2.2), one can note that

{xX-

Hence an upper bound for P{X —a >t + 9—%&31} may be obtained
by (3.6).

a+ Na
a+l

>t} implies {X —u>t}.
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