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Abstract

This paper presents a discrete estimation for the spectral density
function of a stable random field with continuous time from observa-
tions taken at discrete instants of time. Under the condition on spec-
tral density that it has a compact support, asymptotic expressions for
the bias and variance are derived.

1 Introduction

A process { X} is called multidimensional or random field when the param-
eter t which indexes its values has several components t,, ..., t,, say. In this
case the parameter ¢ is vector valued and of course it can no longer represent
time.

If we observe the heights of a sea wave at different points in a given area
(at a fixed time instant) then we have a process, X, which depends on
two spatial parameters z and y. If we record the heights at different points
over an interval of time then we have a process X, which depends on two
spatial parameters z and y, and a time parameter ¢.

Multidimensional processes arises naturally when we consider fields and wish
to study their spatial as well as their temporal variations. Thus, in the sta-
tistical theory of turbulence each component of the velocity vector may be
regarded as a four dimensional process, depending on three spatial coordi-
nates and one time coordinate (cf. Bartlett (1955), p.193), while Longuett-
Higgins (1957) used a two-dimensional process to describe the behaviour
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of sea waves, as indicated above. Pierson and Tick (1957) considered two-
dimensional processes in metrology and oceanography, and a similar model
has been suggested for the analysis of waves in a paper mill.

Other models for two-dimensional processes have discussed by Whittle (1954),
Walker and Young (1955) and Heine (1955).

In this paper,we consider a complex stationary symmetric a stable continuous
time random field X = {X(¢,,¢2)/t1,¢t2 € R} where the parameter a € (0,2)
is assumed known; more specifically, X is a complex-valued stochastic process
for wich the finite dimensional characteristic function is:

Ee (:'Re POV 2 (CY ,"j)) _ e(—C. I, Y=t 2;e' (o1 Hay%2) - «umla)dlndla)

with C, = (am)™! [ |cos(6)|" df, where ¢ is a nonnegative integrable func-
tion called the spectral density of the process X. This spectral density plays
a role analogous to that played by the usual power spectral density function
of a second order stationary process. It is clear that the spectral density ¢
fully describes the distribution of the process X. Alternatively X has the
integral representation:

X(tuta) = [ expihts + data)] (0, Do), (1)

where £ is (S.a.S) process with independent isotropic increments; that means
€ is an additive complex function defined on the Borel subsets of R?, such
that :

e for any integer k, any Borel sets B,, By, - -, By, the random vector:
(f(Bl)l £(32)1 Tt ’f(Bk)) is (S.Q.S),

e for any integer k, any disjoint Borel sets B,, By, -, By, the complex
(S.a.S) random variables £(B,),&(B3), - - -, €(Bx) are independent,

o for all Borel sets B, the distribution of the random variable e!¢(B) is
independent of 6.

The stochastic integral (1) is defined by means of convergence in probabil-
ity for more detail sece Cambanis (1983), Masry and Cambanis (1984) and
Samoroduitsky and Taqqu (1993). The spectral density function is already
estimated by Sabre(1995), In the case when the process random field X has
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discrete time. For the continuous time random field defined in (1), we can
give, as Masry and combanis (1984), an estimate of the spectral density by ob-
serving the process on an interval continuous of time [T, T3] X [~ T3, T3].Our
work is motived by the fact that, in practice, it is not obvious to observe the
process on continuous interval of time. Our goal is to establish nonparametric
estimate for the spectral density ¢ of X, sampled at instants (t’,,, t'm), where
the sampling instants ¢, and t,, are equally spaced, i.e., t, = nn, t =mn,
71, T2 > 0, it is known that aliasing of ¢ occurs. For more details about alias-
ing phenomenon see Masry (1978). To avoid this difficulty, we suppose that
the spectral density ¢ is vanishing outside the interval [—;, ;] x [-£3, Qy],
where 2, and €2, are two nonnegative real numbers. We introduce an esti-
mate depending on ; and §2;. We show that it is asymptotically unbiased
estitnate but not consistent (theorem 3.1).However by smoothing it via spec-
tral window, we show that its mean-square consistency as an estimate, along
with rates of convergence is established (theorems 4.1, 4.2, 4.3 and 4.4). This
paper is organized as follows: In the second section we give some basic defi-
nition and present two lemmas and inequalities which are used in de sequel.
The third section provides the theorem 3.1. we give an estimator asymptot-
ically unbiased but not consistent. We smooth this estimator, in section 4,
by two spectral The fourth section provides the theorems 4.1, 4.2 and 4.3.

2 Preliminaries

We introduce some basic notation and properties used throughout the pa-
per. A real random variable Y is symmetric o-stable (S.a.S), 0 < a < 2,
if Eexp {irY} = exp{—cy |r|°} for all r and some ¢y > 0. The random
variables Y3, ..., Y, are jointly (S.a.S) if all linear combinations a,Y; + a,Y, +
...+ a,Y, are (5.a.S). A random complex variable, Y = Y; +iY} is (S.a.S) if
Y1, Y; are jointly (S.c.S).
- A stochastic process {X(t), —oo < t < oo} is called a (S.c.S) process if
every finite linear combination Y = Y1, a; X (¢;) has a (S.a.S) distribution.
As in (Demesh(1988); Sabre(1994,1995,1999), we give the definition of
the Jackson polynomial kernel.

Definition 2.1
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The following function is called Jackson polynomial
sl 2k - sl 2k
H(N)(l) _ 1 (.s_‘_l_l.(_zl.) where Gk = El_;/ (Sl—.ng.%l) dl’
-

Qn \ Sin(3) sin(3)
N is a fixed real number such that: N = 2k(n—1)+1, where n€ N and
ke NU { } and if k = 1 then n is an odd integer.
~ In section 5, we show that it exists a function h, satisfying:

k(n-1)

HM)= Y h(m'/n)cos(Am’), .

m'=—k(n-1)

from the Jackson polynomial function, we define the following kernel which
is used in the construction of the periodogram.

=1
HyO)I" = |AVH® )" where Ay = ( [ " [H®)| d,\) -
-
If k = 1, this kernel coincides with the kernel defined by Hosoya (1978).
We state an important technical result in the following lemma which proof
is given in sabre (1995,1999).

Lemma 2.1
Let B, y and Jy,q be the following integrals:

n) |2ka

% Slll2

l s
Bn,N -

d\ and Jya = /_ lu["| Hy (2)|%d),

sin 2

where v € ]0,2]. Then

( 2 2ka
> o (;) n*e-l if 0<a<2,
B,y ok
nka 1
< 2ka-1 : il
| = Zka-1" g <ac<d
( ﬂ1+2ko l . l 7+l
2ka 2ka-1 lf = < < [
2%a (y - 2ka+1)n 2k 2k
JN.a S <
2kanTtka 1 i Y +1 2,
| 27+%a (4 + 1) (2ka - v - 1) n? ! TN <
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Lemma 2.2
If ¢ is a (S.a.S) process with independent and isotropic increments, then

for every f € Lo(p), we have:

| | E {exp (i‘Re [/az f(ul,u2)d£(u1,u2)])} = exp (—C’a /nz | f(wy, ug)|*dp(uy, uz)) ,

where C, = 2—17; / |cos(0)|°’d0.
The proof of this lemma is similarly to classical result in the unidimen-
sional case proved by Cambanis (1983).

In the following, we list some inequalities used in the sequel which are proved
by (Masry and Cambanis, (1984); Sabre (1995):

For all real z,y and 0 < a < 2, we have:
lz +yI* — |=I® = |yI*] < 2|zy]?, (2)
For all real z,y > 0 and r > 2, we have:
r__ T I r—1 r—1 _
o~y <5 (= o) -yl (3)
For all real z,y > 0 and 0 < r < 1, we have:

lz" -y < Jz -yl (4)

For all real z,y and r > 0, we have:

|z +yl" <27 (l=|" + [yI") - )

We give a hypothesis of the regularity on ¢ which will be used to improve
the rate of convergence of the estimator:

(A +uy, Ae + ug) — ¢(A1, A2)| < Cull(ur, u)||” where 0 < v <1 (H)

and C) is a nonnegative constant.
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3 The periodogram

In this section we give a periodogram and we develop its proprieties. Assume
that the process X defined in (1) is observed at instants t; = jr and tg = Iny,
i=01,...,N-1,¢=01,... ,M-1,withn =8 andn = it where
w; is a real number strictly greater than 20 for i = 1,2. We é" fine the
periodogram fy a on | = Qy,Q[x] = Qg, Qg as follows:

Inm(M, M) = Coallnm (M, M) P, 0<p<a/2

where

n'mi(n-1) m'sk(m-1) n' m'
Inm(Ay M) = [Tlrg]éAnAMRe[ 2 z h (-E-) I (-’-n-) X
n'm-k(n-1) m's-k(m-1)

el-Hn'ni+m'nr)) X (n’n +k(n=1)7 , m'n+k(m- 1)1*:)].

D
and the normalization constant Cp, Is given by Cpo = -F—[Z,LW;, with
palva

o 1 —cos(u), [ 1=
D, = /- . Wdu  Fpa = /_ - Wdu and C, is given in the

letnma 2.2.

Lemma 3.1 The characteristic function of In u, Eexp [irIn (M, As)] con-
verges to exp[-Calrl"d)(/\;, /\2)].

Proof. By substituting (1) in the expression of Iy », we have:

u’-h(n-l) m'skm-1) / !
Inar(A1,A9) = |T|7'2]°ANAMR°/ Y (1) ha ('"'")
n'--h(n—l)m’--h(m-l) n m

X exp i[n’rl(A. uy) + m'ry(Ng - “2)]}
exp {|ruusk(n - 1) + rauak(m — 1)|} de(ur, o)

It follows from the lemma 2.2 and the definition of the Jackson polynomial
kernel that the characteristic function is the form:

Eexp [irIn,, (M, M) = exp [-Calrl®¥n.m( M, M)]. (6)
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where
(2i+1)r (25 +l)1r
Y (A Ag) = / / Z(vy,va)dvidv, . (7)
jj'ez ~1)n ' —1)m
V1 V2
with Z(‘Ul,‘vg) 'HN ('Ul - Tl )HM ('1)2 — TgAz) ¢ (;— ;2') Let V1 =% —

2mj and vy = Y — 27j'. Since Hy and H)s are 27- perlodlc, we obtain

— i) Hu (y2 — 72A2) ¢J,J (Y1, Y2)dy1dya,

Y (A, A) =

JJj'ez

where ¢;(y1,92) = n nl'm .1

Let j be an mteger such that —( < ”—_—?-’—’1 < ;. Using the fact that

(yl 2n . Ys 2m. ,)

| 8 1
78 < m and |y;| < 7, we get |j| < — + = < 1 and then j = 0. Therefore

2T 2
1/1NM(/\1,/\2) // |HN (y1 — A1) Hm (yz-Tz)\z) (Z: g_z) dydys.  (8)

Since ¢ is continuous and |Hy|*, |Hm|™ are two kernels, the result follows.

Theorem 3.1 Let - < A < Qy; -y < /\2 < S, then iNM()\l,/\2)'i8
asymptotically unbiased estimate of d(A1, A2)P/®) but not consistent

limy ook [Iva(,22)] = [0, X))
a ¢ 2
limp,prooo var [Inp O 22)] = Vo [6 (1, 22)] -

-1
where V, o = C,‘f’aC’z,,,a -

Proof. As in Masry and Cambanis(1984), we use the following equality:
for all real z and 0 < p < 0/2, "

B — cos( mu) . 1—e™
|zl = D; / mEE du = D 'Re/ e du. 9)

Replacing. by Inm, we obta.m

1 o 1 —exp{iuly pm(r, )\2)}
IN M(Al’ Az) WR / |ull+p u1 (10)
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Using (6) and the definition of the F} 5, we get
Eln (M, A2) = (¥ (0, M) (11)

Since ¥y m(A1, A2) converges to @(A;, A2), fN,M(Al,Az) is an asymptotically
unbiased estimate of [¢();, Az)]=, and from (9) it follows that

» 2
E(Inm(M, M) = C2,D51Cs [¥n (M, M)/, (12)

Hence, from (10) and (11), var [iN'M(/\l,/\z)] = Va,ph/)]v,u(/\l,/\z)]!"!. Thus

a~ 2
the asymptotic variance of Iy p(\1, A2) is proportional to [¢(A, /\2)]7'2.

4 Smoothing the Periodogram

In order to obtain a consistent estimate of [¢();, A2)]5, we smooth the pe-
riodogram via two spectral windows Wy and W), defined by: Wy(v) =
MyW (Myv); Way(v) = LyW(Lyv) where My and Ly satisfies:

lim My =o00; lim Ly =00 and lim —-—=0 lim -IiA—‘ = 0,

N—o+4o00 M- 400 Na+oo N M=a+00o M
where W is a nonnegative, even, continuous function , vanishing for |A] > 1

such that / W(u)du = 1. The bandwidths of spectral windows are then

respectively proportlonal to 1/My and 1/Ly. Rachdi and sabre (1998) give
a criterion to choice the spectral bandwidth for random field by using the
cross validation method. We consider the smooth periodogram fy » defined
by:

fam(A, Ag) = /nz Wi (M — w)War (A2 — ua) Iy (w1, u2)duydug,
- <A< Q, and -QQ <A< Qz

We first show that fy a();, A7) is an asymptotically unbiased estimator
of [d’ /\I,Az)] for -, < AM<Qand - <A < Q,.

Theorem 4.1 Let -Q, < A\, < Qy; —3 < A3 < g, then

E[fvm(M 2)] = [#(M, Ma)}* =0 (1).
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if ¢ satisfies the hypothesis H with v < 2ka — 1, then

’ g 11
E[fn (A1, A2)] — [¢(/\1, 1\2)] =0 (TN(A,) + Tm(A2) + i + F)
where |
( 1 _ 1 .
(nzk"“) f A0 | (}_nfTh-_:f) if A2#0
Ty = and Ty = «
1 _ 1 .
u (Aanz""‘l) f A=0 (LMm2ka-—l) if A=
Proof. By the deﬁmtmn of the spectral wmdow we have:

E[fnm(A1, A2)] =
/2 AINIV [AJN(/\I - 'U.l)] LMW [LM(/\z - ‘UQ)] E [fN,M(ul, u:)] duldu2.

Ll:et Mn(M —uy) = v and  Ly(A2 — u2) = v, and from (11), we
obtain: ‘

‘ E
v a

IE[fN M('\I»/\Z )] = // W (v1)W (v2) [¢NM (Al — m , Ag — f,-:;)] dvydvy.  (13)

Using the fact that J}, W(u)du = 1 and the inequality (4), we get:

[ [fnane (s, A2)] = [6(M, D)= | .
< LA L W)W () [ (M = s 2 — 22) = 6(M, \o)|* duydu,.

We now examine the limit of ¥y (/\1 Moo A2 — ) as N,M — oo. From |
(7) we get: Ynar (/\1 == ff’;,/\z — i—’:’-) =

(2j+1)x  p(25'+1)x
/ / le m(u,u2)|* @ (ﬂ E"-’-) du,du,, (14)

J»J ez (2j-1)n To

where

pNar(ur, ug) = Hy (ul -7 (1\1 - -A/TN_)) Hy, (uz — Ty (1\2 - Z;))
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Let2]1l’—1'1(/\1 ~)+i41=s,a.nd2j'1r—-rg(,\g—f:-)+uz=szwe
obt.am

YN M (1\1 . T . ) ) / / |Hy(81)Hm(82)|” R (31, 82, 01, v2)dsyds,.

. MN Z; Jdez
where
v & 27, va 8 27,
Rjd’(sl,szsvhvz)=¢(1\1—m-; 1_—1.7, t\z—L—M—T—z 1_—2 )

Since the function ¢ is uniformly continuous on [-Q,;,Q;] x [~32, ;) and

the fact that |Hx|® , |Ha|® are two kernels, ¥ a (,\1 -
g MN Ly
converges to Y ¢ (Al + — 2y + A+ 2nj’ )
ez 72 .
Let j and j' be two integers such that —Q, < nh + 2 < ) and

T
- < M < {);. The definition of 7; implies that |7;\;| < |8 < =.
It is easy t.oseethat Fl <landk1'| < 1 and then j = j' = 0. Thus we
obtain E[fN M(Ah 1\2)] - [¢(1\1, Az)]' = 0(1)

The rate of convergence:
We assume that the spectral density ¢ satisfies the hypothesis 7{. Denote

by F elbias(fN,M('\la'\2))|£IEUN.M(I\1,/\2)] - [¢(A1,A1)]’/°|. It follows from
the inequality (3) below that
y // W ()W (v,) [[vlmu (A, s Ao — Zn-)] + [#(A1, M) - ]
l'/'~M (M= 5022 = 22) = (M, Ao)| dndvy

Since Yy ay (A. D —"1-) converges to ¢(A;, A2), getting the rate of
the convergence for 77‘ requires to examine the rate of convergence for

/ /_ W ()W (v) Itlm.u (A, n A A, - l:: ) ¢(,\,,,\,)|d,,,¢.,,,
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Indeed, from (8), we obtain
Y (M — 2,00 — 2)
= //IHN (yl —TiA + %) Hum (yz — T2A2 + I,f;"f)

(4]

Denote by A ($n,m,8) = ¥nm (A — 755, d2 — £2) — $(M, A2). Putting

¢ (&,%) dydy,

t=— (y: - TiAL + %) and t' = — (yz — A + Ig;}) , using the hypothesis

‘H, we obtain

et £

The inequality (5) implies that

1A (Wnas d)| < 2270/“# |Hy ()| EYat
N, 9)| < 1 SPY T N ( ‘,,'.I )
. ToA Y
+227C) / 27';“ ( L )dt
Tzr\z—LM -
Y
< 20 || + 2% / N _.v_':’ " \Hy (t)l e d
A -2—1+
T221Gy [T by ()| 1 d
12/\2—-,?;’2— ,
The first integral of (**) is bounded as follows:
/T"\i_%+’r|H O d < /— |Hy (8)1° |t dt
nn-ger S Lz Y O 1

+ [ 1B @)1 17 d
Iﬂ»\ [+ 5t
+ [ o

|Hy (2)]" |¢]" dt.  (15)

(++)
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The function |Hy(.)|® is even, then the first and the last integrals in the right
TV
hand side of the above inequality are equal. Since —— converges to zero and

My
A < 11§l < 7, for a large N we have
I+ 2 4 |+ gt 4+
[T g oeirae < n [T e

= % mﬂ( .LT?::EE)

From the lemma 2.1, we obtain,

I |+ [+
L @ e = T ()

where T () is defined in the theorem 4.1. From the lemma 2.1, the second
integral in the right hand side of (15) is bounded. By using the same way
for the second integral of (**), the result follows readily.

Theorem 4.2 Let —; < \; < ) and —§, < A < Q, such as ¢(Ay, A2) >
0.Then var [f(N M)(/\[,/\z)] converges to zero. If My = n€, Ly = m¢ with

<c<land <c < = then
2k%a? ez ¢ T2

var [fN,M(’\h ’\2))] =0 (nll_zc mll;zcl)

Proof. It is clear that the variance of fix,am)(A1, A2) can be written as fol-
lows :

var(fy,ar (A1, A2)] / Wi (A1 — w1))Wa (A2 — u2)Wi (A — u))War(A2 — ug)
X Cov [IN M(ul, uz) IN M(u,, u,)] du,dugdu,duz

Let z, =M,V(/\|-ul);:r:l =M~(/\1—u,) and $2=LM(’\2-“2);3;=

Ly (/\2 = u2) By using the fact that W is zero for |A| > 1, for large N and
M, we get

var[fiar(Ar, A2)] = /_ll W (z,)W (z2)W (z})W (23)C(z, z')dzdz2dz)
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where

C(=, 2') = cov | I (»\; =20 — T_) I (,\1 - %,z\z - 2%)] :
We éonsidér the three following subsets:

o Li={(u) €[-L1% |o -zl > 0w},

o Iy ={(zn)) € [-L,1% |sa— 4| > o},

o Ly ={(z1, 7}, 72,7) € [-1,1]%; |21 —2}| < o or |z — 7| < o},

where oy and o}, are two nonnegative real sequences, converging to 0.
We split the integral into an integral over the subregion L; and an integral
over Ly x L,.

| _ - s,
var[fN,M(Al,Az)] = /I‘oa +/l‘-1xL: = -(1 + Ja.

By Cauchy Schwartz inequality and theorem 3.1, we obtain

I, < ] (] ) 3 /] ’ i )
Rsclf | WeWedndg+ [ | We)WEnd
where C is a constant. Thus we obtain _
- h£C [sup(W)]’ [on + o) (16)
| It remains to show tliat Jo converges to zero. For simplicity, we define
t\u = A — ;:v’ A=A —._Il_l-:;; A1 = A2~ z—:;; A2 = A — ﬁ,

We first show that C(.;c,-z') converges to zero uniformly in z;, z,, %}, 2} €
[-1,1]. Indeed from the equalities (10) and (11) we have

Bais = E[Inu(vi,m)] = Ivp(vr, )
: . oo Re (evin.u(viv2)) _ o—Calul®¥n,m(v1,v2)
= Fl[Co] "/ /_ - ( 3‘ '|,'+, du.
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Thus the expression of the covariance becomes

C.(z, z') = F,3Ca g /. E Lﬁ cos (urIn,m( A1k, '\u))]
=]

du,d
—exp { —Ca E:=! [u|®Pn,p (A1, f\z.k)} h:,:z ?:,

The following equality 2 cosz cosy = cos(z + y) + cos(z — y), implies that

2 1
E(]l cm(“k’N.M('\l.h)«z.k))] = Zexp [“Cc / |"'11'z|AN.M(”l,vz)dﬂ(?l,vz)]
=1

+ %exp [—C, / .TgTzIBN,M(vh va)dp(v,, ”z)]

Where
2 a
Avm(vi,v2) = X weHn(ndg — nivn) Hy(radap — Tava)
k=1
2 a
Bym(v,v2) = D (-1)*'wrHn(ridp — ior) Hy(radgp — mawa)| .
k=1

By substituting in the expression for C(z,z’) and changing the variable u,
to (—ug) in the second terme, we obtain

du;duz

2 -2 - -K'
C(z,z') = F;2Ca /.’ (e K_e K)m,,,—,,

(17)

where

K=C, ‘/R’ I(Tlfz)é z::l uan(Tlt\j* - Tlvl)HM(72A2# - Tz”z)r d"(vlo ”2)

: 2 a (¥
K'=Ca ) lul /, |Hnv(mAx — vi)Hu(madag — )" ¢ (—', 22') dvydv,
k=1 R non

Since K, K’ > 0, [e~¥ — ¢~¥'| < |K - K'| exp{ IK - K| - K’}
Using the inequality (2) we obtain:
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|K — K'| < 2Cam1Ta|urua] ¥ Qn,m(Ar0; Ara; Ada1; Az2), where

. | . S . "
Qnar (A A2 Az Ag2) = / 0 / 0 IHN(Tl)q,l — 1wy ) Hy (12221 — T2U2)
- J-fa

%
¢(uy, uz)dudug

x|Hy(riA12 — 1) Hu (12222 — T2tta)

" Let show now that @n,m(A1,1; M.2; Aa,15 A2,2) converges to zero. Indeed, since
" ¢ is bounded on [~Q;, Q)] X [, ), we have

_ S - 1
Qnm(Ar1; Adr2; A5 Aa2) / Q IHN(Tv\l,l — ) Hy(rid2 — 1'11‘1)' du; .
. o .

Qg $
x sup(¢®) [_ n,IHM(TzAz’l — Taug) Hy(T2d2,2 — Tatia)| dug (18)

From the definition of Hy we write

]
dvl =

a .
/nl |HN (A1 — nivr) Hy (idha — o)
—aé]

) Q 1
[-Ih B::,N

a)First step: We show that the denominators of the first and second fraction
under the last integral do not vanish for the same v;, so we suppose there
- exist v, belonging to [-£,)] and 2,2’ € Z such that: TIA) — Tty =.
227 and T\ 2—7iv1 = 22'7. Since Ay /A1, then z and 7 are different.

Therefore z-—2'= %-!- (A1 — A1,2)- Hence, [z-2| = 1 [A1,0 — A12] . As
g u

ka ka

sin [g (1‘1/\1,2 - Tlvﬂ
sin [% (

sin [% (TlAl,l - "rlvlﬂ
T1IAL,2 — 1'1‘"1)]

Si:[% (TlAl,l - 1'11)1)]

.

liny-so0 |A1,1 — Ar,2] = 0, consequently for a large N we get: |z — 2| < -;—
Thus, we obtain a contradiction with the fact that z and 2z’ are different
integers.bj second step: We. assume there exist g points, W,V3,---,V; €

[0, €] such that for j =1,2,---,¢ 1A, — T1V; € 27Z, therefore % -
2 . l
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h/} € Z, and we assume there exist ¢’ points V{,V3,---, v € [—€, 4] such

oo ha VI |
that, fori =1,2,---,q -'—D!-'Z €Z. l

Showing that, |V;| ;E Ql, |V'| M forl<j<qandl <i<d.

Indeed, —1<A ! <0and0 < A;;’I-Q < 1 because w; > 2(1,. Hence
1. 1 .
—;7&¢Zand '\l:;QI¢z On the other hand, 1——&—&—)&5"&1&8
1 1
N = oo. Forala.rgereget:t;hal:[-l=ﬂl~]E ’:‘"‘ m<l+[ ]s,where

[z]z denote the integer part of z.Hence, T2 “‘ 1 ¢ Z. In the sa.me manner

we show that == '\‘ : ¢ Z. Similarly it can be shown that: Al at8 1¢z.

'c) thzrd step We classxfy V; and V; by increasing order:
N <V; <V <<V 0 < Q, and we write the integral in the

following manner:

N
-[-ﬂl
g+ -1

= 11+Z'+¢Iz.i+ Y. L+,

i=1

-
I

sinlg (TlAl,l - Tﬂh)} o

sin [% (T[Al'l = 1'101)

sin F (mAr2— nv;)} =

i (nda —nn)

/\’,-l—J(N) sin 'E' (TlAl,l - Tﬂ)]) sin "2-‘ (TlAl.z - 1’101)‘ dv
1.

o)
]

-0 sin L-;- (T[A]J o 'r;vl)‘ sin %(T|A1.2 — T]‘lll)
. k - -
V;,+6(N) |sin !2! (iA1= r,vgl_ *|sin 2 (A2 —niwr) .

dﬂ; .

o
il
=
-
l -,
o
o~
2
~
a
=

4} (mAa —nm)f|  |sin {3 (ndz — 1w

Viips —8(N) |sin g (mA1y — nivy) ko sin 3 (nA12 - niwn1) &
I; = / + 3o
v )| |sin{} (nA2 = nw)

dvl .

& * a

+8N)  |sin f;' (Mg — 1y
R 1.k T 1 ko
/n. sin ‘g (mAg — r.vl)* “|sin 2 (nhr2 —nw) dv,

oo’ +§(N) | sin % (Tp\l.l - r.v.)‘ sin '% (1'|A|3 - r.v;)‘
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where (V) is a nonnegative real number converging to zero and satisfying
the following inequalities :
- < Vj, —8(N) < Vj; +6(N) < V;, =0(N) < Vj, +6(N) < --- <
Vioy = 0(N) < Vj,, +8(N) < @ and 6(N) < |23 Mlzv
Flrst we show that the first integral converges to zero. We know that for a
large N we have ,\1,1 < ;.
 Since there is no v between—; and V;, —6(N) on which the denominators

are vanishing.
I, £ —
inf [ i

By substituting for V;, in the last inequality, we obtain : lsin
71| A1 2= +5(N)| l'm
2

Vh -J(N )+ , 1

r Jz(N) si r1(21,2-Vj; +6(N))
2

ka

.__._I._——
,sin

inf

n(M,2-V, +6(~))|"“ _
/ =

sin . For a large N we have ""\L""\;"”(N)' < +
ﬂ%ﬂ <T- 3‘—"-2(& On the other hand two cases are possible : |
1) if )(1',2 —/\1,1 > 0 we have |)\1,2—A1,1 +6(N)| = VAl,g —/\1,1 +6(N) > J(N)

2) if )\1,2—/\1'1 < 0, since |)\1’2—)\1’1| > 2(5(N), we have I/\l,2_)‘l,l+6(N)l =
/\1,1 - /\1,2 = J(N) > 6(N)

Therefore “";N) < ”"\“’TA.L,‘"H(N)' <m- m’éﬂL Thus we get
< Ya=0+h
= Isin 1162(1\’) |2ka

For the integral I;, we bound the first fraction under integral by n*e. I; <

ka Vi HO(N) 1 ituti i ' in-
Vs |sin[3-(nha—flvl)"h dvy. By substituting for Vj, in the last in
equahty and p\lttlng Uy = v_..z..k_'. we get Iz ; S nka ;:.;j’:(()’vv)) 1 dv

| Ism[‘(nh z—‘rw)]l e

since | A1 —v| < 8(N), it is easy to see that |A; 2—v| > |A12— A1 ]+ A1 —v] 2
A2 — Al = 0(N) > L“—""H”_'\' :

Since §(/N) converges to zero, for a large N,we have d(n) < -1-2‘-(1r —

2 2 = Aal) Therefore 0< Tll——*——'-—'\‘ Al ¢ gy L—*———'\”"" <7 'A"’"A‘z'”“ug <.

Rate of convergence
From (21) we have: J, = O (Sw, M(/\],Az)) where

Snm(Ar1, A2) = /_ . W(-‘Fl)W(l';)W(xz)w(-?;)QN,if(Al'l;/\1.2;/\2.1;/\2,2)dznd$'1d$2d33-

mmwm@v«m«,mn,mz
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The Fubini’s theorem implies

’ AL ! ' ' ' '
SN,M('\l,/\z) =/—m /_ﬂ2 ¢(v1,'12) (/_1_7(1:1,1:2,1:,,zz)h(xl,xg,xl,xz)d:c.dxldxgdxz) dv,duy,

where ]($],$2, x'l’z'2) = W($I)W($'1)W($2)W($'2) and

h(zy, T2, 7),25) = |Hn(mid, — iv)Hy(12A2)0 — T202)|’
lHN(Tl/\l 2 — Tlvl)HM(Tzz\zz - Tz‘vz)l v
] T
Let =1 and =22 t:
e Uy MN an U2 LM we ge

2
(91 (17} 1

Svm(A, A2) = /n /n ¢(v1, va) (/z; Wi (u1) |[Hn(nA — iy —Tlvl)lg d"l)
—af] Va2 Mr

N

2
1
X (/'l_l:7 WM(UQ) lHM(TzAz — TolUg — Tzvz)lg‘ dth) dv,dvg.
T Im

By two changes of variables first w, = A\, — v ; w2 = Aa — va secondly
t1 = w; — up; ta = we — Uz, we get:
M+ pA24022

Snm(Ar, A2) = d(A—wy, da—w,) [Gn(w)))? [Gum(w2))? dw,dw,
M- I

where GN(w,) = ‘l+: Wn(‘wl - tl) lHN(Tltl)l dtl

wa+
and GM(tUQ) f ? ;'_A_‘- WM(w2 - tz) IHM(Tgtg)P dtg.
Since —€2; < A\ < Q, and -, < A2 < Q,, we have:

+20M +212
Snvar(Ar, A2) < / / (A —wy, Az—w32) [Gn (wy)]? [C pm(w2)]? dw,duw,.

20, 20,

Putting 7t; = u, and Tt = u,, the expression of Gy(w;) and Gay(wq)
become:

nw + u "
Gy(w) = -}; ﬂm_IWN(wl—-:—!)lHN(tq)I*du,
. ¥
Gulws) = L M W (wg - ’)luu(um’du,

nmP-
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For the definition of the kernel Hy and the fact that is 27 periodic, for a
large N and a large M, we have the following inequalities

6Mpy sup(W)nke = 6Mpy sup(W) = ka
Gu(w) < Mvsup() |7t + =2 ,P(l)/ (.’L) dt,
T (Ba,N) 4 0 T (B,,, N I\
6L W)mke (= L L ka
Gulwy) < LS W)m™ (%, SLusup(W) (Z)" s
o (12Bg )2 0 T2(Bhm)? t2

It follows from the lemma (2.1) that, Gy (w;) = O (“—’f) and Gpy(wp) =

o (55;-) . Thus J, =0 (KM'I%Z U‘—,"n‘)—z) . From the rate of convergence of J; in
(10). we obtain: -

(Mn)? (LM)z) .

var[fy m(A1, A2)] = O (O'N + oy + - —

In order to give a simplified rate of convergence for the variance, we take

1 1
2k2qe? e 2’

and we choose oy = n~(1-2) g4 = m=0-2¢) withd = 1-2¢,and d' = 1—2¢'.

1 1 1
Hence Var[fym (1, A2)] = (n(l—2c) + m(l'2c’)+n(l—2c)m(l—2c’)) . Thus

My = n¢, Ly = m® where 2k2 5 <c< - and

1 1
Var(fn m(A1, X)) = O (n(l—2c) + m(1—2c’)) '

It remains to choose § and f' in the definition of §(N) and §(M) such that
the limits in (22) go to zero with the same rate. Therefore # and 8’ must

satisfy the following constraints:

2ka—1—-2kaf > 0 (23)
2ka—1-2kaf = f+ka—-1-(1-_c)ka (24)
2ka ~1—-2kaf! > 0 (25)
2ka—1-2kaff! = f+ka-1-(1-Cc)ka (26)
The equalities (24) and (26) imply that
2ka — cka 2ka — cka
b= 1+ 2ka - and f= 1+ 2ka

l
Since —— < ¢, d < = L ,» it is clear that these 8 and ﬂ' satisfies the constraints
(23) and (25) and the result follows.

m_lgph-smumvu«,mn,mz
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Theorem 4.3. Let - < A\ < ; and —Qy < Ay < Sy, such that
&(A1, A2) > 0, then

2

E| (1, )2) - 00, X))

If ¢ satisfies the hypothesis H with v < 2ka — 1 and My = n€
Proof: We show easily that:

2 2\?
E IfN,M(/\la A2) = [¢(Ay, A2)]*’5| = (E [fvm (A, A2)] = [@(Ar, 1\2)]")
— Varfyum(M, A2). '

From theorems 4.1 and 4.2 we get the result.

Theorem 4.4. Let (A, \;) belong to ] — @, [x] — Qa,8%[ such that
d(A,A) > 0. If o> %, then [fN.M(Al,/\l,z)]% converges in probability
tO ¢(/\l, /\2).

Proof: Using the following inequality: |y? — 29| < g|y —z|(y* ' + 27,
z,y € RY and ¢ > 2, we obtain

|[fN,M(/\1,/\2)]% — ¢()\1,/\2)| <

;_P |Fwmr (s, A2) = (8O, X)) | (o (A, 2a))7 ™ = (B, 2)]%).

Thus we show easily that [fy a (A1, )\2)]% converges in probability to ¢(A, A2).
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