
1. Introduction

The count data sets emerge in various fields like the yearly number of destructive earthquakes, number 
of patients of a specific disease in a hospital ward, failure of machines, number of patients due to 
coronavirus, number of monthly traffic accidents, hourly bacterial growth, and so on. Various discrete 
probability models have been utilized to model these kinds of data sets. Poisson and negative binomial 
distributions are frequently for modeling count observations. On the other hand, in the advanced 
scientific eon, the data generated from different fields is getting complex day by day, however, 
existing discrete models do not provide an efficient fit. Discretization of continuous distribution can 
be applied by using different approaches (survival discretization-mixed-Poisson-infinite series). The 
most widely used technique is the survival discretization approach by Roy (2003, 2004) proposed 
the discrete normal distribution and Discrete Rayleigh distribution, respectively.  Krishna and Pundir 
(2009) introduced discrete Burr and discrete Pareto distributions. 
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Gómez-Déniz and Calderín-Ojeda (2011) proposed the discrete Lindley distribution. AL-

Huniti and AL-Dayian (2012) introduced discrete Burr Type III distribution. Furthermore, 

Akdogan et al. (2014) introduced Point estimation of parameter in discrete burr distribution. 

Para (2014) proposed discrete generalized Burr Type XII distribution. Kinaci et al. (2016) 

applied Bayesian estimation for discrete Chen distribution. Para and Jan (2016) introduced 

discrete three parameter Burr Type XII and discrete Lomax distributions. Also, AL-

Metwally and Ibrahim (2020) proposed discrete alpha power inverse Lomax distribution 

with application of COVID-19 data. In addition, AL-Metwally et al. (2020) introduced some 

of the statistical properties are obtained for the discrete Marshall-Olkin generalized 

exponential distribution. Eliwa et al. (2020) proposed discrete analogue of odd Weibull-G 

family of distributions.  Freitas et al. (2021) applied Bayesian approach to estimating the 

parameter of the Discrete bilal distribution with right-censored data. Gillariose et al. (2021) 

proposed some of the statistical properties are obtained for the new the discrete Weibull 

Marshall–Olkin family of distributions. Hegazy et al. (2021) investigated Bayesian approach, 

under two types of loss function; squared error and linear exponential loss functions, to 

estimate the parameters of the Bayesian estimation and prediction of discrete Gompertz 

distribution. UL-Haq et al. (2021) presented the discrete Type II half-logistic exponential 

distribution with applications to COVID-19 data. AL-Ghamdi et al. (2022) introduced the 

discrete power-Ailamujia distribution. 

The rest of the paper is organized as follows: the discrete Marshall-Olkin extended Burr 

Type XII (DMOEBXII) distribution is introduced, and some statistical properties are given in 

Section 2. While, in Section 3, moments and maximum likelihood (ML) estimators are 

derived of the unknown parameters. The efficiency of the introduced estimation is assessed 

via simulation study and results are presented, in Section 4. Section 5 provides two real 

applications of the DMOEBXII distribution. Conclusion is presented in Section 6. 

1. Discretizing a Continuous Distribution 

The general approach of discretizing a continuous variable can be used to construct a 

discrete model by introducing a grouping on the time axis see Roy (2003, 2004). If the crvX 

has the sf,  ( )   (   )and times are grouped into unit intervals so that the drv of X 

denoted , -; which is the largest integer less than or equal to, will have the probability 

mass function (pmf) 

 ( )    ( )    (   )                   (1) 
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The pmf of the drv, dX can be viewed as discrete concentration of pdf of X. So, given 

any continuous distribution it is possible to construct corresponding discrete distribution 

using (1). 

One of the advantages of applying this approach of discretizing is that the sf for discrete 

distributions has the same functional form of the sf for the continuous distributions; as a 

result, many reliability characteristics and properties remain unchanged. Thus, discretization 

of a continuous lifetime model according to this approach is an interesting and simple 

approach to derive a discrete lifetime model corresponding to the continuous one. 

2.1. Construction of discrete Marshall-Olkin extended Burr Type XII distribution 

Al-Saiari et al. (2017) presented mathematical and statistical properties and limitations of 

MOEBXII distribution along with application to real lifetime data and provided graphical 

illustrations of the dimensions of MOEBXII distribution. Also, they estimated the parameters 

using ML and Bayesian method. 

The pdf of DMOEBXII distribution is given by 

 (     )  
        

.      
/
   

[  (   ).      
/
 
]

                                       (2) 

where are         shape parameters and should be positive. 

The corresponding cdf and sf are, respectively, given by 

 (     )  
.      
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/
                                           (3) 

and 

 ( )    
.      

/
 

  (   ).      
/
                                (4) 

Using (1) dX can be viewed as the discrete analogue to the continuous NAPTE variable 

X, and is commonly said to follow DMOEBXII distribution with two parameters        , 

denoted by DMOEBXII (   ) distribution, where the corresponding pmf of dX can be 

written as 

 ( )   
.    (   ) /

 

  (   ).    (   ) /
  

.      
/
 

  (   ).      
/
                                    (5) 



 

 

 

No.2 - Volume (66), 2022 

 

-20- 
 

and the cdf, sf and hrf are as follows: 

 ( )      ( )    ( )  
.    (   ) /

 

  (   ).    (   ) /
                                    (6) 

 ( )     ( )    ( )    
.      

/
 

  (   ).      
/
                                   (7) 

and 

 ( )   
 ( )

 ( )

 
0(    (   ) )

 
1 0  (   )(      

)
 
1  0(      

)
 
1 0  (   )(    (   ) )

 
1

0  (   )(    (   ) )
 
1 20  (   )(      

)
 
1  0(      

)
 
13

        

                   (8) 

There are some problems associated with the definition of  ( ), three of the more 

notable ones are given below: 

a.  ( )is not additive for series system. 

b. The cumulative hrf,  ( )  ∑ ( )      ( ). 

c.  ( )    and it has the interpretation of a probability. [For more details, see Xie et 

al. (2002) and Lai (2013) and (2014)]. 

Therefore, it was necessary to find an alternative definition that is consistent with its 

continuous counterpart. Roy and Gupta (1992) provide an excellent alternative 

definition of a discrete hrf denoted by   ( ): 

  ( )    0
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                   (9) 

There is a relationship between   ( ) and  ( ), given by: 

  ( )        ( )  (10) 

The two concepts  ( ) and   ( )  have the same monotonic property, i.e.,   ( )  is 

increasing (decreasing) if and only if  ( ) is increasing (decreasing). 
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Plots of pmf and hrf of DMOEBXII distribution are presented, respectively, in Figures 

1 to 2, for some selected values of the parameters. 

 

  
Figure 1: The plots of the probability mass function 

 

   
 

Figure 2: The plots of the hazard rate function 
 

Figure 1, shows that the pmf of DMOEBXII distribution can be decreasing and right 

skewed according to the selected values of the parameters. Plots of pmf shows that the 

DMOEBXII distribution exhibits a long right tail compared with other commonly used 

distributions. Thus, it will affect long term reliability predictions, producing optimistic 

predictions of rare events occurring in the right tail of the distribution compared with other 

distributions. Figures 2 indicates that the hrf plots of DMOEBXII distribution are unimodal, 

increasing and right skewed shapes to the selected values of the parameters. 

2.2 The main properties of discrete Marshall-Olkin extended Burr Type XII distribution 

This section is devoted to obtain some important distributional properties of 

DMOEBXII (     ) distribution, such as the mode, quantiles,     moments and order 

statistics. 

2.2.1 Quantiles of discrete Marshall-Olkin extended Burr Type XII distribution 

The u
th

 quantile xu of a drv X, xu, satisfies 
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 (    )    and  (    )     , i.e, (    )     (  )  [For more details see 

Rohatgi and Saleh (2001)]. 

The u
th

 quantile xu of the DMOEBXII distribution (α, β) is given by: 

   {  6  .
  

   (   )
/

 

 
7
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                                                           (11) 

where [x] denotes the smallest integer greater than or equal to x and 0 < u < 1. 

Proof 

 (    )   , from (6) 
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Similarly, if   (    )     , one obtains 
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Combining (12) and (13), one gets, 

{  [  (
  

   (   )
)

 
 
]

  

}

 
 

       {  [  (
  

   (   )
)

 
 
]

  

}

 
 

  

Hence,    is an integer value given by: 
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    (14) 

Thus, the median of DMOEBXII (   ) distribution can be computed from (14) as follows 
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    (15) 

2.2.2 The moments of discrete Marshall-Olkin extended Burr Type XII distribution 

a. The non-central moments of the discrete Marshall-Olkin extended 

Burr Type XII distribution 
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The non-central moments of DMOEBXII distribution can be obtained using (5) as 

follows: 

  
   (  )   ∑     ( ) 
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In particular, the mean ( ) of DMOEBXII distribution is given by 
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     (17) 

b. The central moments of the discrete Marshall-Olkin extended Burr Type XII 

distribution 

The variance (  ) of DMOEBXII distribution is 

    ∑    [
.    (   ) /

 

  (   ).    (   ) /
  

.      
/
 

  (   ).      
/
 ]   

   {∑   [
.    (   ) /

 

  (   ).    (   ) /
   

   

.      
/
 

  (   ).      
/
 ]}
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In general, the central moments can be derived using the relation between the central and 

non-central moments as given below 

    ∑ . 
 
/ 

    (  )         
                                                    (19) 

c. The standard moments of the discrete Marshall-Olkin extended Burr Type XII 

distribution 

The     standard moments can be obtained as follows: 

    (
   

 
)   (20) 

The skewness and kurtosis of the DMOEBXII distribution are given by, respectively, 

   
  

  
            

  

  
     Where    

 
, is given by (18)   and r = 1, 2, …. 

2.2.3 The order statistic of the discrete Marshall-Olkin extended Burr Type XII 

distribution 

Let  (     ); the cdf of the     order statistic for a random sample            , from the 

DMOEBXII (   ), is given by  

  (      )   ∑ ( 
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Using the binomial expansion for ,    (     )-    and substituting (6) in (21), 

where 

   (       )   ∑.
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Special cases 

Case I: If i=1 in (22) one can obtain the distribution function of the first order statistic, as 

given below 

  (      )    ,   (       )-    [   (
.    (   ) /

 

  (   ).    (   ) /
 )]

 

  (23) 

Case II: If i = n in (22) the distribution function of the largest order statistic, as follows: 

  (      )  , (       )-   [
.    (   ) /

 

  (   ).    (   ) /
 ]

 

  (24) 

Suppose that X1, X2, X3, ..., Xn is a random sample from the DMOEBXII distribution 

with two parameters α and β. Let X1:n, X2:n, X3:n, ... , Xn:n denote the corresponding order 

statistics. Then, the pmf of Xi:n, is defined by: 
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Using the binomial expansion for(   )   , then the pmf in (26). 
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The pmf of the smallest order statistic is obtained by substituting i=1 in (26) as follows:  
 (      )  

 ∑ .   
 

/   
   (  )  .
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And, the pmf of largest order statistic is obtained by substituting i=n in (26) as follows: 
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  (28) 

Also, (22) can be used to obtain the pmf of the DMOEBXII (   ) distribution, (see Arnold 

et al. (2008)).  

3. Estimation of the Parameters of Discrete Marshall-Olkin Dxtended Burr Type XII 

Distribution 

In this section, methods of moments and ML are used to derive the estimators of the 

parameters for the DMOEBXII distribution. 

3.1 Method of moments 
 

In this subsection, method of moments is applied to estimate the unknown parameters 

of the DMOEBXII distribution. The method of moments is based on equating the population 

moments, which are functions of the parameters to the corresponding sample moments and 

subsequently solving the two equations simultaneously. The first the second population and 

sample moments, respectively, are  
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Where  ̃      ̃ are the estimators of          

Since the moments of DMOEBXII distribution cannot be obtained in closed forms and 

(32) cannot be solved via ordinary techniques, therefore the estimates can be obtained 

numerically. 

3.2 Method of maximum likelihood 

 
In this section, method of ML is used to derive the estimators of the parameters for the 

DMOEBXII distribution 

The method of ML is used to estimate the vector of two parameters,    (   ) sf and 

hrf, of the DMOEBXII (α, β) distribution. Based on Type II censored samples, also 

confidence interval of the parameters (α, β) sf, and hrf are derived. Suppose that X1, X2, ..., Xr 

is a Type II censored sample of size r obtained from a life test on n items whose lifetimes 

have a DMOEBXII (α, β) distribution. Then the likelihood function is 

 .   /  *∏  (  )
 
   +, (  )-
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where p(x) and S(x) are given, respectively, by (5) and (7). The X(i) ‘s are ordered times 
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The natural logarithm of the likelihood function is given by  
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Considering the two parameters,   and   are unknown and differentiating the log 

likelihood function in (36), with respect to   and  , one obtains 
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Then the ML estimators of the parameters, denoted by  ̂ and  ̂ are derived by equating 

the two nonlinear likelihood (37) and (38) to zeros and solving numerically. 

Depending on the in-variance property, the ML estimators of S(x), h(x) and   (x) can 

be obtained by replacing α and β with their corresponding ML estimators  ̂  and  ̂ , 

respectively, in (7), (8) and (9) as given below 
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When the sample size is large and the regularity conditions are satisfied, see (Lehmann 

and Casella (1998)), the asymptotic distribution of the ML estimators is 

   bivariate normal (       . /) , where   (   )     ̂  ( ̂  ̂), and     ( )  

The asymptotic variance-covariance matrix of the ML estimators α and β, which is the 

inverse of the observed Fisher information matrix. The asymptotic observed Fisher 

information matrix can be obtained as follows: 

  . /  [
 .

   

   /  .
   

     
/

 .
   

     
/  .

   

   /
]

( ̂  ̂)

  (42) 

The asymptotic 100(1 − α) confidence interval for α, λ, SML(x), hML (x) and      (x) are 

given, respectively by: 

   ̂    

 
  ̂                 ̂    

 
  ̂   (43) 

where L and U are the lower and upper bound  ̂ is  ̂,  ̂,  ̂( ),  ̂( ) or  ̂ ( )  Z is the 

   (   
 

 
 )  the standard normal percentile,  (   )  is the confidence coefficient,   ̂ is 

the standard deviation and length     . 

4. Numerical Results 

This section aims to investigate the precision of the theoretical results based on 

simulated and real data, by evaluating relative absolute biases (RABs) and relative errors 

(REs). 

4.1 Simulation study 

In this subsection, a simulation study is presented to illustrate the application of the 

various theoretical results developed in the previous section on the basis of generated 
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Data from DMOEBXII (α, β) distribution, for different sample sizes (n=30, 60 and 100) 

and using number of replications N=1000. The computations are performed using R package. 

The numerical procedures are performed according to the following algorithm. 

Step 1: a random sample             of sizes (n = 30, 60,100) these random samples 

are generated from DMOEBXII distribution using the following transformation: 

   {  6  .
  

   (   )
/

 

 
7

  

}

 

 

             and    are random sample from uniform 

(   ) and then taking the ceiling. 

Step 2: two different set values of the parameters are selected as, 

Set 1(          ) and Set 2         . 

Step 3: For each model parameters and for each sample size, the ML and moments 

estimators are computed. 
 

Step 4: Steps from 1 to 3 are repeated 1000 times for each sample size and for selected 

sets of the parameters. Then the averages, RABs, REs and variances of the estimates of the 

unknown parameters are computed. 

The results of the simulation study are given in Tables 2 and 3. The average, RABs, 

REs and estimate risk of ML estimates of the parameters, sf and hrf are computed as follows: 

1) Average  
∑  ̂ 

 
   

 
,  

2) RAB ( ̂)  
|    ( ̂)|

          
 , 

3) Relative error ( ̂)  
  ( ̂)

          
 , 

  

4) Estimated risk ( ̂)  
∑ ( ̂  )  

   

 
. 

 

      Table 2 shows the averages, RABs, Res for the parameters, sf and hrf estimates, also 95% 

confidence intervals where the initial values for the parameters are α=1.5, β=15 under three 

levels of  
 

 
     percentage of uncensored observations Type II censoring 80% and 100%. 

Table 3 displays the same computational results, but for different initial values of the 

parameters α=50, β=2, at the same mission time    from the DMOEBXII distribution for 

different sample sizes where (n=30, 60 and 100) and also level of Type II censoring 80% and 

100% and number of replications, N = 1000. 

 

Tables 1 and 2 show that the RABs and REs of the ML estimates of the parameters, sf and 

hrf, decrease as the sample size n increases, as expected. Furthermore, as the level of 

censoring decreases, so do the RABs and REs of the ML estimates of the parameters, sf and 
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hrf estimates. As expected, the lengths of the confidence intervals decrease as sample size 

increases. These results are expected because decreasing the level of censoring means that 

the sample provides more information, increasing the accuracy of the estimates. In general, 

when r=n, all of the Type II censored sample results reduce to those of the entire sample. 
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Table 1: RABs, REs of ML estimates, 95% confidence intervals of the parameters, survival 

and hazard rate functions from DMOEBXII distribution for different sample sizes n, censoring 

level r and the replications N= 1000,      ,     , t0=0.9  

 
 

 

n r parameters estimate RABs REs LL UL length 

30 

24 

  1.16572 0.22285 0.38545 0.00938 2.32206 2.31268 

  16.95243 0.13016 0.09315 14.15783 19.74697 5.58913 

R(  ) 0.99956 0.00817 0.00904 0.98188 1.01803 0.03615 

h(  ) 0.59667 0.02991 0.22721 0.33341 0.85995 0.52654 

30 

  1.13286 0.24476 0.40394 0 2.34469 2.34469 

  16.83467 0.12231 0.09031 14.12567 19.54367 5.41800 

R(  ) 0.99996 0.00779 0.00883 0.98229 1.01761 0.96529 

h(  ) 0.60476 0.04385 0.27513 0.28596 0.92355 0.63758 

50 

40 

  1.24329 0.17114 0.33777 0.29948 2.25663 2.02668 

  16.73467 0.11564 0.08781 14.10053 19.36881 5.26828 

R(  ) 0.99995 0.00769 0.00878 0.98241 1.01749 0.03509 

h(  ) 0.58694 0.01308 0.15029 0.14128 0.76108 0.34829 

50 

  1.38729 0.07513 0.22381 0.71585 2.05873 1.34289 

  16.49483 0.09965 0.08151 14.04957 18.9401 4.89053 

R(  ) 0.99995 0.00721 0.00849 0.98296 1.01693 0.03397 

h(  ) 0.56763 0.02022 0.18682 0.35117 0.78409 0.43293 

100 

80 

  1.48269 0.01154 0.08771 1.21956 1.74582 0.52625 

  15.20648 0.01376 0.03029 14.29768 16.11528 1.81761 

R(  ) 0.99988 0.00139 0.00374 0.99241 1.00736 0.01494 

h(  ) 0.57778 0.00269 0.06823 0.49873 0.65684 0.15811 

100 

  1.50109 0.00072 0.02197 1.43518 1.56699 0.13182 

  15.01196 0.00079 0.00729 14.79326 15.23065 0.43739 

R(  ) 0.99987 0.00093 0.00096 0.99795 1.00181 0.00385 

h(  ) 0.57895 0.00068 0.03438 0.53911 0.61879 0.07968 
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Table 2: RABs, REs of ML estimates, 95% confidence intervals of the parameters, 

survival and hazard rate functions from DNAPTE distribution for different sample sizes n, 

censoring level r and the replications N= 1000,     ,    , t0=0.9  

 
 

n r parameters estimates RABs REs LL UL length 

30 

24 

  49.29487 0.01410 0.01679 47.61543 50.97431 3.35888 

  2.64827 0.32413 0.40258 1.03797 4.25857 3.22061 

R(  ) 0.95228 0.04102 0.21177 0.56484 1.33972 0.77487 

h(  ) 0.24359 0.20246 0.81417 0 0.74094 0.74094 

30 

  49.38692 0.01226 0.01566 47.82093 50.95291 3.13198 

  2.42765 0.21383 0.32697 1.11975 3.73555 2.6158 

R(  ) 0.94205 0.02984 0.18063 0.61159 1.27252 0.66092 

h(  ) 0.26185 0.14268 0.68348 0 0.67937 0.83503 

50 

40 

  49.67528 0.00649 0.01139 48.5356 50.81496 2.27937 

  2.28342 0.14171 0.26618 1.21868 3.34815 2.12947 

R(  ) 0.93404 0.02109 0.15183 0.65627 1.21181 0.55554 

h(  ) 0.27542 0.09826 0.56721 0 0.6219 0.6219 

50 

  49.82491 0.00351 0.00837 48.98803 50.66179 1.67377 

  2.30443 0.15221 0.27587 1.20093 3.40793 2.20700 

R(  ) 0.93543 0.02261 0.1572 0.64783 1.22304 0.57521 

h(  ) 0.27272 0.10709 0.59214 0 0.63444 0.63444 

100 

80 

  49.92764 0.00145 0.00538 49.38964 50.46564 1.07599 

  2.15563 0.07781 0.19725 1.36663 2.94462 1.57798 

R(  ) 0.92616 0.01247 0.11677 0.71252 1.13981 0.42728 

h(  ) 0.28763 0.05828 0.43683 0.02786 0.55448 0.52662 

100 

  49.96835 0.00063 0.00356 49.61254 50.32416 0.71162 

  2.09375 0.04688 0.15309 1.48137 2.70613 1.22475 

R(  ) 0.92187 0.00777 0.08433 0.7532 1.09053 0.33733 

h(  ) 0.29438 0.03619 0.3442 0.08117 0.50464 0.42053 
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5. Application  

The main aim of this subsection is to demonstrate how the proposed methods can be 

used in practice. A real lifetime of two data sets is analyzed to illustrate the theoretical 

results.  

Data Set I 

Table 5 refers to an uncensored data set released by Maguire et al. (1952) that 

corresponds to day intervals between 109 consecutive coal-mining tragedies in the United 

Kingdom from 1875 to 1951. The sorted data is listed below: 

Table 3: Data set of day intervals between 109 consecutive coal-mining tragedies in the 

United Kingdom from 1875 to 1951 

1 4 4 7 11 13 15 15 17 18 19 19 20 20 22 

23 28 29 31 32 36 37 47 48 49 50 54 54 55 59 

59 61 61 66 72 72 75 78 78 81 93 96 99 108 113 

114 120 120 120 123 124 129 131 137 145 151 156 171 176 182 

188 189 195 203 208 215 217 217 224 228 233 255 271 275 275 

275 286 291 312 312 312 315 326 326 329 330 336 338 345 348 

354 361 364 369 378 390 457 467 498 517 566 644 745 871 1312 

1357 1613 1630             

 

Table 4: The descriptive measures of day intervals between 109 consecutive coal-mining 

tragedies in the United Kingdom from 1875 to 1951 

Min Mean SD skewness variance kurtosis Max 

1 233.32 296.434 2.999 87873.331 10.526 1630 

 

Figure 3. The TTT plot of the DMOEBXII model of day intervals between 109 

consecutive coal-mining tragedies 
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Figure 4: The Histogram, pdf, empirical cdf, empirical sf and the P-P plots of day intervals 

between 109 consecutive coal-mining tragedies 

Data Set II 
 

Table 5 shows the mathematics degrees of 48 students at the Indian Institute of Technology 

in Kampur. The data set was provided by Gupta and Kundu (2009). 

Table 5: Data set of the mathematics degrees of 48 students at the Indian Institute of 

Technology in Kampur. 

 29 25 50 15 13 27 15 18 7 7 8 19 12 18 

5 21 15 86 21 15 14 39 15 14 70 44 6 21 58 

19 50 23 11 6 34 18 28 34 12 37 4 60 20 23 

40 65 19 31            
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Table 6: The descriptive measures of the mathematics degrees of 48 students at the Indian 

Institute of Technology in Kampur 

Min First 

quantile 

Median mean skewness SD Third 

quantile 

variance kurtosis Max 

4 14 19.5 25.9 1.3317 18.60478 34 346.1379 4.323312 86 

Figure 5. The TTT plot of the DMOEBXII model of the mathematics degrees of 48 students 

at the Indian Institute of Technology in Kampur 

Figure 6: The Histogram, pdf, empirical cdf, empirical sf and the P-P plots of the 

mathematics degrees of 48 students at the Indian Institute of Technology in Kampur 
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6. Conclusion 

      The Marshall-Olkin extended Burr Type XII distribution is introduced in this paper as a 

new discrete distribution. After constructed it, the parameter's probabilistic properties are 

investigated, and its parameters are estimated by ML and moments methods. To validate the 

theoretical results, comprehensive simulation results are obtained. The utility of the discrete 

Marshall-Olkin extended Burr Type XII distribution is demonstrated empirically through two 

applications data set of day intervals between 109 consecutive coal-mining tragedies in the 

United Kingdom from 1875 to 1951 and the mathematics degrees of 48 students at the Indian 

Institute of Technology in Kampur. 
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