
1. Introduction

A direct Bayesian identification approach for autoregressive, AR(p), models was developed by Diaz 
and Farah (1981). The method assumes the order to be a random variable and derives its posterior 
probability mass function assuming that the maximum order is a known constant. Then, posterior 
probabilities of the order's values are computed and the value having maximum probability is chosen 
to identify the model. Derivation of such posterior mass function is based on the likelihood function 
of the observations of the time series as well as the chosen prior.  Derivations of Diaz and Farah have 
been employed using a Natural-Conjugate prior (See Broemeling (1985).
An approximate indirect Bayesian method has been developed by Broemeling and Shaarawy (1987) 
to identify ARMA processes. The approach depends on an assumption that the model's orders are 
unknown constants but their maximums are known. The technique develops a posterior probability 
density function for the models' coefficients. To avoid the difficulties in the computations of the exact 
posterior analysis of ARMA processes, the technique adopts a multivariate t approximation for the 
posterior density of the coefficients of the model with maximum orders.
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Then a sequence of univariate t tests is employed in order to test the significance of 

coefficients. After removing insignificant coefficients, one can determine the models' 

order. A Jeffreys' prior was used to develop Broemeling and Shaarawy technique. (see 

Broemeling and Shaarawy (1987) and (1988)). 

The current study is mainly interested in developing a direct Bayesian identification 

technique of moving average processes using three different well-known priors found in 

statistical literature. Such priors are the g prior, developed by Zellner (1983 and 1986), the 

natural-conjugate prior, introduced by Raiffa and Schlaifer (1961) and Jeffreys' prior, 

introduced by Jeffreys' (1961). The posterior mass function of the order q of MA models will 

be derived using each prior. The efficiency of each posterior mass function in identifying the 

first and second order moving average processes is to be investigated using simulation 

studies. 

For well-known reasons, the Bayesian identification of moving average models is 

complicated because of non-linearity of the errors in the model's coefficients. This problem 

causes the likelihood function to be complicated and leads to non-standard posterior 

distributions. A reasonable solution of such problem is to use analytical approximations, such 

as the Broemeling and Shaarawy one, to give a linear estimate of the errors in the model's 

coefficients. This simplifies the likelihood function. 

The current study is the first attempt to develop a direct methodology for Bayesian 

identification of MA processes using g prior. Moreover, the study is interested in studying the 

efficiency of employing g prior in such development using Monte Carlo simulation studies. 

In addition, the current article is also the first attempt to check the effectiveness of using the 

natural-conjugate prior to develop the direct Bayesian identification technique for MA 

processes using simulations. Furthermore, the article aims to compare the goodness of the 

above-mentioned priors with Jeffreys' prior in developing the proposed identification 

technique. 

The current article is arranged in the following manner: Section 2 introduces a review 

of the literature. Section 3 discusses the moving average processes. Section 4 defines the 

three considered priors. In section 5, the direct identification technique is conducted using g 

prior. Employing the direct technique of MA processes using the natural-conjugate prior as 

well as Jeffreys' prior is displayed in section 6. Moreover, wide scale simulations to 

investigate and compare the effectiveness of the considered priors in developing a direct 

Bayesian identification for MA processes are conducted in section 7. 
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2. Review of the Literature 

There are two well-known Bayesian identification techniques, namely, the direct and 

the indirect ones. Diaz and Farah (1981) have introduced a direct Bayesian technique to 

identify AR(p) models. This technique considers the order p of the model a random variable. 

Then, it develops a posterior mass function for p. The value having maximum probability is 

selected as a point estimate of the order p (See Broemeling (1985)). Daif et al. (2003) have 

corrected the derivations of Diaz and Farah. Such corrections enable the investigation of the 

technique and the comparison of its effectiveness with the indirect Bayesian approach 

developed by Broemeling and Shaarawy(1988). Using a numerical algorithm, Monahan 

(1983) developed another direct way to calculate the posterior probabilities for the orders p 

and q of autoregressive moving average (ARMA) models. 

The direct analytical methodology has been extended to seasonal AR processes by 

Shaarawy and Ali (2003). Another extension to MA processes was conducted by Shaarawy et 

al. (2007). In that work, the direct technique is compared with both the indirect technique and 

Monahan's technique. Ali (2009) extended the technique proposed by Shaarawy et al. (2007) 

in order to identify the mixed ARMA(p, q) processes. Moreover, Shaarawy et al. (2011) have 

extended the technique to seasonal moving average models. Furthermore, identification of 

bivariate autoregressive models using a direct Bayesian approach was introduced by 

Sharaawy et al. (2006). In addition to this, the direct approach has been developed to identify 

multivariate (vector) AR, MA as well as seasonal AR processes by Shaarawy and Ali (2008), 

(2012) and (2015) respectively. It might be important to mention that Shaarawy et al. (2007) 

and (2011) as well as Shaarawy and Ali (2012) have employed the Broemeling and Shaarawy 

indirect approach as an intermediate stage while developing the direct Bayesian identification 

approach of non-seasonal, seasonal and multivariate moving average processes. Using 

Jeffreys' prior, the direct methodology has been successfully extended to the case of nons-

easonal and seasonal multivariate ARMA processes by Shaarawy et al. (2018, 2019). 

Previous studies employed their theoretical derivations using the natural-conjugate 

prior as well as Jeffreys' prior. However, in the simulation studies all of them employed 

Jeffreys' prior only. The g prior has not been employed in developing theoretical derivations 

or numerical studies by anyone of the above mentioned studies. Furthermore, the goodness of 

the behavior of the natural-conjugate prior in developing Bayesian identification has not been 

checked by anyone of these studies. 

On the other hand, the prior selection is one of the fundamental problems in Bayesian 

analysis. Some efforts in the Bayesian time series literature were devoted to this problem.  El 
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Zayat (2007) developed comprehensive surveys for various known informative and non-

informative priors. She has developed wide scale simulation studies to check the 

effectiveness of the employed prior in solving the estimation problem of AR(1) model. 

Moreover, Shaarawy et al. (2010) considered prior selection problem in the Bayesian 

prediction process of AR models and investigated the performance of the one step-ahead 

predictive densities based on different priors. Recently, Al-Bassam et al. (2013) have derived 

an approximate posterior distribution for the coefficients of MA models using g prior and 

conducted wide scale simulation studies to investigate and compare the performance of g 

prior, the natural-conjugate prior as well as Jeffreys' prior in developing an indirect Bayesian 

approach for the identification of moving average models. 
 

3. Moving average processes 

The moving average process of order q, MA(q), is a special case of the ARMA(p, q) 

process. The MA(q) model can be written using the following formula (Box and Jenkins 

(1970)): 

                                                                                             (3.1) 

Where, 

               
       

  

Where, B represents the backshift operator such that           {               } is 

the time series.    s, are the random errors. They are assumed to be independent identically 

normally distributed having mean zero and variance    , where      ⁄     is known as 

the precision parameter.   ’s are the coefficients of the model. 

The model can be displayed in the following explicit form:                   

                                                                                 (3.2) 

MA processes are known to be always stationary, whereas they need conditions to be 

invertible. The conditions of invertibility can be formulated such that the roots of the 

polynomial equation      should lie outside the unit circle. 

Special cases of (3.2) are the MA(1) model given by 

                                                                                                        (3.3) 

 And the MA(2) model given by 

                                                                                                (3.4) 

For MA(1) model the invertibility condition is |  |    and for MA(2) model, the 

invertibility conditions are                       and |  |   . (Box and Jenkins 

(1970)). 
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4. Prior Distributions 

The g prior is a middle ground of sorts between the informative Natural-Conjugate (NC) 

prior and non-informative Jeffreys' prior (Karlsson (2001)). It was developed by Zellner (in 

1983 and 1986) to avoid a problem that faced the NC prior which is the evaluation of prior 

covariates of the hyper-parameters. Zellner's motivation was to derive an appropriate prior for 

the regression parameters in the General Linear Models (GLM). 

The joint g prior of the parameters γ and σ for MA(q) models has been derived by 

Shaarawy et al. (2010). It has the form 


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Where, ]...[ 21
 q , σ is the errors variance,  is an anticipated value of γ and X 

represents the matrix of regressors of MA(q) model. It has the t
th

 row Xt of the form 

                   ]...[ 1 qtttX   .                                                                   (4.2) 

Several estimates were suggested for the constant g in the Bayesian literature. 

Fernàndez et al. (2001) have employed a simulation study and suggested the following 

estimate for g: 
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Where n is the sample size and k is the number of the parameters in the model. 

On the other hand, the NC prior for the ARMA(p,q) process is the, so called, normal-

gamma prior if the Broemeling and Shaarawy approximation is used (See Broemeling and 

Shaarawy (1988)). A normal-gamma prior of ARMA(p,q) model is displayed in the following 

form, 
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Where, α, β,      and the     positive definite matrix Qh are called hyper-parameters of 

the prior distribution, γ and τ are the model parameters, and h = p+q. 

Furthermore, Jeffrey’s prior is given by (See Jeffreys' (1961)), 

1),( p                         (4.5) 
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5. Identification of Moving Average Models based on g prior 

This section is devoted to developing a direct Bayesian technique to identify MA 

processes using g prior defined in section 4. This development is one of the basic 

contributions of the current study. As stated above, the proposed approach is based on 

assuming the order q of MA models to be a random variable with a known upper limit. The 

technique is interested in obtaining an appropriate posterior probability mass function for q. 

Assume that   nn yyyS 21  is a time series with n observations. Therefore, the 

initial residual values q 110 ,,,    are unknown. By letting the initial residual values equal 

their unconditional mean, i.e. ,0i where i= 0,-1,-2,…,1-q, one can get the conditional 

likelihood function of MA(q) model in the form 
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For convenience one should rewrite the form (5.1) in terms of the parameter σ instead of 

precision τ as follows 
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where qi  is the coefficient of the thi  lagged value of t  in the 
thq  model, 
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Displaying (5.2) in matrix notation we get: 
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Where, A1 is a matrix of order qq  having ij
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The conditional likelihood function (5.3) is analytically intractable since the error 

terms εt-i’s as functions in the coefficients of the model are nonlinear. They need an 

approximation to simplify the form of the likelihood function. However, one can’t 

approximate the unknown εt-i’s without determining the value of q. Thus, we need another 

identification method to obtain an initial value of q say q0, then we can approximate the 

errors as linear functions of the model’s coefficients. The proposed technique to get q0 is 

Bayesian. It is the indirect identification approach introduced by Broemeling and Shaarawy 

(1987, 1988). Such technique was investigated and shows high percentages of correct 

identification (See Shaarawy et al.(2007) and Al-Bassam et al.(2013)). Consequently, (5.3) is 

approximated by the following form 
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 And 1Â  is a matrix of order qq  having ij
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Moreover, C1 is as defined above. 

Moreover, the following prior assumptions are considered: 

 

 The conditional joint prior density for γ
(q)

 and σ given the order q is assumed to be the 

joint g-prior defined in (4.1), after approximating the error trems εt-i by the corresponding 

non-linear least squares estimates it̂ . It is given by 
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Such that X̂  is the estimate of the matrix of regressors X in MA(q) model, where the t
th

 row 

tX̂  is defined as  

                       ]ˆ...ˆ[ˆ
1 qtttX                                                                 (5.6) 

 The prior probability mass function of the order q is uniform 
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Using these quantities, we assert the following theorem: 
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Theorem 5.1 

Considering the approximate conditional likelihood function (5.4) in addition to the priors 

(5.5) and (5.7), the approximate posterior probability mass function of q, the order of MA 

process, is given by 
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111  and  , CBA


 are as defined above. 

Proof 

 Combining the priors (5.5) and (5.7), one gets the joint prior 
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Multiply the approximate likelihood function (5.4) by the joint prior (5.10), one gets a 

joint posterior distribution in the form 
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Reorganizing the terms between the brackets ( ) in the exponent of (5.11), one gets 
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Consider the exponent in the above equation and complete the squares, then (5.12) can be 

written as 
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Integrating the joint posterior in (5.13) to eliminate γ, one gets the marginal posterior 

distribution of the parameters q and σ in the form 
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Then, integrating (5.14) with respect to σ one gets the posterior mass function of q given by 

(5.8). This completes the proof. ▀ 

This distribution assigns a probability to each value of q or in other words, to each of 

the k moving average models 
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When calculating the probabilities of q in (5.8), one should observe that the inverse of 

the matrix XXgAA ˆˆ ˆ
1

*

1
  and its determinant will be computed for each value of q. One 

way to select the identified model is to select the value of q with largest posterior probability. 

 

6. Identification of Moving Average Models based on NC and Jeffreys' 

Priors 

Consider the conditional likelihood function (5.1) of MA(q) models, and substitute the 

errors by their non-linear last squares estimates. One obtains an approximate likelihood 

function in the form 
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Shaarawy et al. (2007) have mixed the above approximate likelihood function with the 

natural conjugate prior defined in (4.4), namely the normal-gamma prior. They have derived 

the approximate posterior mass function of q. It is given by 
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and 11 , BA


and 
1C are as defined in section 5. 

On the other hand, Shaarawy et al. (2007) have also asserted that, depending on the 

likelihood function (6.1) and Jeffreys' prior (4.5), the posterior mass function of q is 
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where 11 , BA


and 
1C are as defined in section 5. 

 

7. Numerical studies 

Large-scale simulation studies are conducted to investigate the performance and 

evaluate the accuracy of the proposed direct Bayesian methodology in solving the problem of 

identification for MA models. The proposed methodology is based on the above mentioned 

three priors, the g, the natural-conjugate and Jeffreys' prior. Some MA models, with different 

sets of coefficients' values, are used for illustration. Different time series lengths are 

determined to represent short, medium, and long time series to check the effect of the time 

series length on the behavior of the proposed methodology. Moreover, different values of the 

upper limit for the MA model's order are assumed. Requested simulations are conducted 

using computer programs especially developed, in MATLAB 7, for the study. 

Observe that, the involved simulation studies are the first attempt to assess the 

performance of both g prior and the natural conjugate prior in developing a direct Bayesian 

technique to identify models for MA processes. Employing an informative prior through a 

simulation study is a very complicated process since the hyper-parameters exist in the 

informative prior need to be estimated. 

 Evaluation and comparison of the performance of the adopted identification approach, 

depending on each one of the above mentioned three considered priors, are done using the 
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percentage of correct identification as an effectiveness criterion. Such percentage has the 

form 

                 1000

0 
N

n
p                                                                                   (7.1) 

Where n0 is the number of times where the technique selects the correct model and N is the 

number of series generated from the MA model. 
 

7.1. Design of Simulation Studies  

Four simulation studies were conducted, using some MA(1) and MA(2) models having 

different coefficients. They are referred to as Case I, Case II, Case III and Case IV. The 

coefficient of MA(1) model is selected to be 0.5 and 0.8. While, the selected coefficients for 

MA(2) model are (0.9,-0.3) and (0.1,0.8). Some coefficients values are selected at the center 

of the domain of invertibility of the model, whereas other selections are near its boundaries. 

Different lengths are selected for the time series as short, medium and long time series; these 

lengths are 50, 100, 150, 200 and 300. The maximum order of the model, k, is considered 

once to be 3 and another time to be 4. 

For illustration, the procedure of Case I starts by generating a set of data consisting of 

500 random variables εt following the normal distribution with mean zero and precision 

parameter 2. Then the MA(1) model's equation with θ = 0.5 is employed recursively to 

generate an artificial time series of 500 observations following the model. The initial values 

of εt are assumed to be zero. In order to eliminate the influence of the initial values, we delete 

the earliest 200 observations from the generated time series, thus we obtain a time series of 

300 observations following MA(1) model with θ = 0.5. In the second step, consider only the 

earliest 50 observations as the generated time series. The adopted direct identification 

approach is employed to identify a model for the time series. This process is done three times 

using each of the above mentioned three priors. Moreover, it is repeated for each of the above 

mentioned two upper limits of the order. The second step, explained above, is employed 

again for the earliest 100 observations including the earliest 50. The process is repeated again 

for the earliest 150 and 200 observations, and finally, for the whole generated time series. 

Third, the above two steps are repeated 500 times. In the last step, one computes the 

percentage of correct identification (7.1) for the adopted approach using each selection of the 

prior, time series length and maximum assumed order, k. 

It is worth noting that, it is required to estimate the hyper-parameters in order to employ 

g prior and the natural conjugate prior. To estimate the hyper-parameters a training sample is 



No.2 - Volume (66), 2022 

 

  

-12- 
 

used (See El-Zayat (2007) and Shaarawy et al (2010)). The training sample is considered as 

the first 10 observations of the time series (for short time series) or the first 10% of the time 

series observations, if the series is longer than 100. 

To employ the proposed direct identification technique given a certain maximum order 

k for the moving average model, one evaluates the approximate posterior mass function of q 

using each selected prior. The posterior probabilities of each value of q are computed in each 

case. Then, the technique selects the value of q with largest posterior probability as an order 

for the model. Finally, percentage of correct identification (7.1) is calculated in each case 

using 500 replications of the simulation steps. Case II, III and IV are structured similarly, 

however, using some different models and coefficients. 

 

7.2. Numerical Results 

After conducting the above mentioned four simulations, the values of the effectiveness 

criterion computed for the proposed identification methodology are summarized in table 

(7.1). The lengths of the generated time series as well as the prior functions are presented 

over the rows of the table, whereas the considered four source models and the assumed two 

maximum orders are presented in the columns. The entries of the table are the percentages of 

correct identification in each case. 
Table (7.1) 

Effectiveness Results of the Proposed Direct Bayesian Identification Technique 

Using G, N-C and Jeffreys' Priors  

  MA(1) Models MA(2) Models 

5.01   8.01   
9.01  , 

3.02   

1.01  , 

8.02   

Time Series 

length 
PRIOR k = 3 k = 4 k = 3 k = 4 k = 3 k = 4 k = 3 k = 4 

50 

G  

N-C 

JEFFREYS' 

93.0 

85.6 

78.0 

93.4 

87.0 

73.8 

92.0 

83.4 

76.4 

92.2 

82.0 

68.8 

34.8 

47.8 

50.4 

33.4 

46.2 

44.8 

90.0 

85.4 

79.6 

90.2 

85.6 

68.4 

100 

G  

N-C 

JEFFREYS' 

97.8 

92.6 

86.8 

97.4 

91.6 

83.8 

94.4 

88.8 

82.2 

92.8 

83.6 

77.4 

61.8 

73.6 

74.2 

58.0 

70.0 

65.8 

92.2 

88.8 

84.8 

92.0 

88.8 

78.6 

150 

G  

N-C 

JEFFREYS' 

97.4 

90.0 

90.4 

97.6 

89.4 

88.6 

94.2 

85.4 

83.8 

93.0 

82.8 

80.0 

78.0 

84.4 

83.0 

75.4 

78.4 

76.0 

94.0 

88.6 

86.8 

93.6 

85.8 

81.0 

200 

G  

N-C 

JEFFREYS' 

97.6 

90.6 

92.0 

98.2 

89.2 

90.8 

95.2 

86.0 

86.4 

94.4 

83.0 

82.4 

88.2 

88.8 

87.2 

85.2 

83.6 

81.0 

95.0 

86.2 

85.4 

93.8 

81.4 

78.8 

300 

G  

N-C 

JEFFREYS' 

97.8 

87.4 

89.8 

97.8 

85.6 

88.0 

95.2 

84.0 

84.8 

94.4 

80.6 

83.0 

95.2 

89.8 

90.2 

92.8 

85.4 

86.0 

96.6 

86.4 

86.8 

95.8 

81.4 

83.0 
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    Source: Simulated Data 

Regarding table (7.1), some general conclusions can be observed. First, regarding 

MA(1) sources: The values of effectiveness criterion for the proposed technique using the 

three prior functions are greater than 68% in all cases. They become larger when the number 

of observations becomes larger. Application of the identification method using G prior 

appears to give the highest percentages of correct identification for all considered time series 

lengths and all maximum orders. Moreover, the application using N-C prior appears to give 

values of effectiveness criterion higher than the application using Jeffreys' prior for short and 

moderate time series lengths for all maximum orders. Nevertheless, the application of the 

technique using both N-C and Jeffreys' priors give equivalent results for long time series. 

Furthermore, the results of k = 3 are always better than those of k = 4. 

On the other hand, regarding MA(2) sources: The position of the coefficients of the 

model inside the invertibility domain affects the obtained results. The MA(2) model with 

coefficients (0.9, -0.3) lies far from the boundaries of the invertibility domain. For this model, 

the values of effectiveness criterion are less than 50% for short time series. They increase as 

time series length becomes larger. For short and moderate time series the application of the 

technique using both N-C and Jeffreys' priors achieve higher percentages of correct 

identification than the application of the technique using G prior. Whereas, for long time 

series, the performance of the G prior dominates the other two priors. Finally, The MA(2) 

model with coefficients (0.1, 0.8) lies near the boundaries of the invertibility domain. For this 

model, the obtained values of effectiveness criterion are similar to those of the MA(1) 

sources. 

The results obtained in table (7.1) support the adequacy of employing each of the 

three considered priors, especially the G one, to introduce a solution for the Bayesian 

identification problem of pure MA processes. 

It might be suggested for future work to use the G prior and the Natural-Conjugate 

prior - rather than the classical use of the Jeffreys’one - in the Bayesian identification of 

mixed autoregressive moving average processes, and in Bayesian estimation and prediction 

of the class of ARMA, seasonal ARMA and multivariate ARMA models. And to compare the 

effect of the selected prior on the performance of the technique.   
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