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Abstract

In this paper, three resampling techniques are considered, namely, bootstrap, jack-
knife and jackknife after bootstrap. The main objective is to study the performance of
these techniques for maximum likelihood estimation for the parameters using expec-
tation conditional maximization either (ECME) algorithm for Grubbs model when
the latent response follows asymmetric heavy-tailed distributions such as scale mix-
ture of skew normal distributions (such as skew-t (ST), skew slash (SSL), skew con-
taminated normal (SCN) ). Also, the performance of these techniques is discussed for
detection of the influential observations using local influence method for assessing
the robustness of these parameter estimates under different perturbation schemes for
Grubbs model. The performance is illustrated through an application using real data
set under different bootstrap replications. Our results provide resampling techniques
with better fit, protect against outlying observations and more precise inferences than
traditional techniques.

Keywords: Expectation conditional maximization either , Grubbs model, Jackknife after boot-
strap, Scale mixture of skew normal distribution.
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1 Introduction

The problem of comparing measurement devices which vary in price, time spent to
measure and other features, such as efficiency, has been of growing interest in many
scientific applications,such as medicine, Barnett[ 1969]. Grubbs measurement error
model was introduced by Grubbs [1948]. This model is typically used to assess the
relative agreement between two or more measuring devices (or instruments) that are
used to measure the same quantity of interest. Lachos et al. [2007]studied the nor-
mal Grubbs (N-G) model, noting the well-known lack of robustness of least-square
estimates against outlying observations. To overcome this deficiency, a general class
of scale mixture of normal Grubbs model (SMN-G) was proposed 1nOsorio et al.
[2009]. Properties of the SMN distributions, such as student-t (T), slash normal (SL)
and contaminated normal (CN) may found in Andrews and Mallows [1974], Lange
and Sinsheimer [1993]. For asymmetric setting, Montenegro et al. [2010] proposed
the skew normal Grubbs (SN-G) model and showed advantages of using asymmet-
ric distributions for obtaining accurate robust estimates. An asymmetric version of
SMN distributions called scale mixture of skew normal distributions (SMSN) was
introduced by da Silva Ferreira et al. [2011] as a challenging family for statistical
procedures which accommodates both asymmetry and heavy tails jointly.This new
family contains all the distributions which studied by Lange and Sinsheimer [1993]
with an extra parameter, which regulates the skewness of the distribution such as
skew-t (ST), skew slash (SSL) and skew contaminated Normal (SCN) distribution,
Zeller et al. [2014] studied SMSN for Grubbs model and revealed to the results are
perfect agreement with those presented in Osorio et al. [2009] and Montenegro et al.
[2010] concluded that in the presence of outlying observations in measurement error
models, supposing both asymmetry and heavy-tails, may represent a good choice for

robust estimation.

Three resampling techniques will be considered in this paper. Bootstrap was pro-
posed by Efron [1979], jackknife was developed by Efron [1982] and jackknife
after bootstrap (JaB) was developed by Efron [1992]. Bootstrap and jackknife re-
sampling techniques were considered by [Efron and Tibshirani [1993], Sahinler and

Topuz [2007]] and they used the bootstrap and jackknife estimates in linear regres-
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sion model. Also, both resampling were used by Algamal and Rasheed [2010] to
estimate the sampling distribution of the parameter estimates in linear regression
model. JaB was used by Martin and Roberts [2010] to determine the cut-off val-
ues for various diagnostic measures in linear regression under non-normal errors and
small samples. JaB was used in Algamal [2012] in count regression model to assess
the error in the bootstrap estimate parameters. Also, JaB was used in Beyaztas and
Alin [2014c] to detect influential observations lor binary logistic regression model.
Diagnostic analysis is an efficient way to detect influential observations, this can be
achieved by conducting local influence analysis under different perturbation schemes
(Case-weight, Response perturbation, Multiplicative bias perturbation). Zhu and Lee
[2001] developed an approach to perform local influence analysis for general statis-
tical models with missing data by working with a Q-displacement function closely
related to the conditional expectation of the complete-data log-likelihood at the E-
step of the expectaion maximization (EM) algorithm. Zeller et al. [2014] used Zhu

and Lee approach to detect the influential observations for SMSN-G models.

The primary objective of this paper is to evaluate the performances of resampling
techniques such as bootstrap, jackknife and JaB in the estimation of the parameters
for SMSN models, respectively, in addition, to detect the influential observations us-
ing the local influence method under different perturbation schemes following Zeller
et al. [2014]. This paper is organized as follows: Section 2 describes the Grubbs
model. Sections 3-5 discuss the performance of the resampling techniques in the
estimation of the parameters, in the detection of the outlying observations and in the
detection of the influential observations, respectively. Section 6 evaluates the perfor-
mance of the resampling techniques through application using real data. Section 7

contains conclusions.

2 Grubbs Model

Suppose one have p > 2 instruments for measuring quantity of interest x in a group
of n experimental units. Let x; be the unobserved (true) value corresponding to unit

1, where 1 represents the ith item in sample, y; the measured value obtained in unit

The Egyptian Statistical Journal Vol.61, No. 2, 2017




128 Amany Mousa and Hanadi Mansour

Li=1,..,n,j=1,..,p. Relating these variables, the Grubbs model is given by
Grubbs [1973]
Yi= 0+ lpx+ & (2.1)

where o = ((X[,(Xg,...,(lp)r,()ﬂ = 0 to eliminate redundancy, Ly = |y, 137 ve
scalar p x 1 vector, y; = (y;, ...,y,-p)'fand £ = (&, ...Si,J)T(the error vector) are p x |

iid

random vectors independent with ¢ % Np(0,D(§)) and x; ~ N (uy, C:), where

D(g) :diag(gia“-agp)T- (2.2)

Y~ N(u,Z), where jt = ot + 1 ppty, £ = 11,8+ D(E) (2.3)

Here the first instrument is compared to the remaining p — | instruments. The param-
eter vector of interest is 0 = (., a’ ¢, ¢TY, in addition to Ay in the skewness case,

Montenegro et al. [2010].

3 Resampling Algorithmic Approach for Estimation of Parameters for Grubbs

Model

This section is devoted to investigate the performance of resampling techniques such
as bootstrap, jackknife and JaB in the estimation of the parameters for Grubbs mod-
els. Bootstrap and jackknife estimates of the parameters and the relevant standard er-
ror (SE) for Grubbs model can be obtained following the bootstrap and the jackknife
algorithms described in Sahinler and Topuz [2007]. But the estimation of the param-
eters is to be conducted using expectation conditional maximization either(ECME)
algorithm Liu and Rubin [1994] for SMSN models (ST, SSL, SCN) following Zeller
et al. [2014], jackknife after bootstrap (JaB) estimates of the parameters and the rele-
vant standard error for each estimate are obtained in Section 5 of Martin and Roberts
[2010].
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4  Resampling Algorithmic Approach for Detection Outlying Observations for
Grubbs Model

To study the performance of resampling techniques in the detection of the outlying
observations, The Mahalanobis distance was use by Zeller et al. [2014] as adiagnostic

measure to detect the outlying observations for SMSN-G models,
d=(Y-0)"2 (Y - p) (4.1)

Jackknife and JaB techniques are considered in this section. With respect to the jack-
knife technique, one can detect the outlying observations, by removing the ith data
point from the original data set, and compute the Mahalanobis distance for (n —1) ob-
servations, then a point is flagged as outlier if its distance value exceeds the cut-off
value. The cut-off depends on the distribution of the Mahalanobis distance for ST,
SSL and SCN distributions, Zeller et al. [2014] . After determining the outliers for
cach jackknife resample, calculate the percentage of data sets among all n reduced
data sets in which each data point is flagged. This overall percentage will typically
be a good indicator for this point to be an outlier, Martin et al. [2010]. For JaB
technique, we can find the appropriate JaB influence cut-offs for a Mahalanobis dis-
tance to detect the outlying observations for Grubbs model following the algorithm
in Martin and Roberts [2010].

5 Resampling Algorithmic Approach for Detection the Influential Observa-
tions for Grubbs Model

Diagnostic analysis is an efficient way to detect influential observations, this can
be achieved by conducting local influence analysis to assess the influence of mi-
nor perturbations on the model/data under different perturbations schemes on the
model/data such as (Case-weight, Response perturbation, Multiplicative bias pertur-
bation). Zhu and Lee [2001] developed an approach to perform local influence analy-
sis for general statistical models with missing data by working with a Q-displacement

function closely related to the EM algorithm. Zeller et al. [2014] used Zhu and Lee
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[2001] approach in the detection of the influential observations for SMSN-G mod-
cls. Following Martin et al. [2010], we can develope and conduct the algorithm to
evaluate the performance of jackknife in the detection of the influential observations

for each distribution as follows:

L. Remove the ith data point from the original data set and compute the conformal

normal curvature, Poon and Poon [1999] for (n —1) observations
Bo.,(6) = Crou, (6)/(norm (24 {~Go} ' ), (5.1)

where CfQ‘[ = -2 (lTQWOZ), ——Q';,O = (A;fo(—“QQ)”AWO), [; is a vector in RP
with the j"entry equal to one and all other entries zero.
Q(é,a) | é) — E{[C(é,w |Ye) | y,é]’

s 20(6|6 220(0,0|0
Oo(8) = Fagar’, & = “X2e),

R

Determine if M(0), (M(0) = By, ;) exceeds the cut-off value M(0) + c*SM(0),
where ¢* is a selected constant depending on the real application, SM(0) is the

standard deviation of M(0);,j=1,...,q,

3. Calculate the percentage of data sets among all n reduced data sets in which
each observation is flagged, This overall percentage will typically be a good

indicator for this observation to be an influential.

For JaB technique, one can follow Beyaztas and Alin [2013] algorithm to find an ap-
propriate influence cut-offs for a conformal curvature normal measure for detection

the influential observations for Grubbs models.

6 Application

A real example is presented to investigte the performance of resampling techniques
in the estimation of the parameters and detection of the outlying and influential ob-

servations for Grubbs Model. Two instruments (a standard and a new one) used for
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measuring the vital capacity of the human lung, operated by skilled and unskilled
operators, and administrated on a common group of 72 patients. The following four
cases were compared: case 1: standard instrument and skilled operator; case 2: stan-
dard instrument and unskilled operator; case 3: New instrument and skilled operator;
case 4: New instrument and unskilled operator, Barnett [1969]. The analysis con-
ducted using R version 3.3.1. The number of replications (B) equal to 100, 1000.

The convergence criterion
= | i, (6.1)

where n, is the dimention of 8, & is very small number, say 107 is used for the
ECME algorithm. ML estimates and Jackknife estimates and the relevant standard
error of these estimates for ST-G, SSL-G, SCN-G models are obtained. One can
concluded that the jackknife estimates and the original estimates for each distribution
are very close. Also, standard error of the jackknife estimates for ST, SSL., SCN
distributions are less than SE of the estimates for the same distribution for original

sample.

Bootstrap and JaB estimates and the relevant standard error of these estimates for
ST-G, SSL-G,SCN-G models are obtained corresponding the number of replications
B =100, 1000. Noting that JaB estimates and bootstrap estimates are very close for
each replication for SMSN-G models. SE of the Bootstrap and JaB estimates T
when B = 1000 are less than SE of the same estimates when B = 100 for SMSN-
G models. Also, when the number of replication increases, one may got on good
estimats with low standard error. But the standard error values for other estimates
are not comparable because they are in different scales.

The relative efficiencies RE1 = SE(0poor ) /SE (Ojucik)s RE2 = SE(0)ap)/SE (0yar)
are computed for each resampling technique for each model as shown in Table (D).
One can conclude that the RE2 for JaB when B = 1000 is larger than the RE2 for JaB

when B = 100 for all estimates.
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Table 1: Relative Effeciency for bootstrap and JaB estimates for SMSN-G models when B=100,1000

) Relative Effieciency
- ST-G | SCN-G SSL-G
B | Parametert Bootstrap | JaB Bootstrap | JaB Bootstrap JaB
Ly 0.093 0.085 0.010 0.333 0.058 0.035
Lo 0.125 0.089 0.095 0.155 3.249 1.086
4 0.860 2.035 1.753 4.837 2.641 6.151
G 1.047 8.855 1.027 10.934 2.007 19.226 |
S G ~0.924 2.094 1.467 3.728 2.506 5.903
= £ 1.063 2.640 1.212 3.135 2.465 6.258
o 1.154 2.951 1.106 4.065 1.066 5.128
o 1.017 1.526 1.052 1.683 0.901 2.403
o 0.813 0.995 0.892 1.702 1.372 3.894
A 2.4 1.675 0.094 0.351 4.596 2.164 |
12 0.021 0.064 0.028 0.152 0.029 0.029
& 0.043 0.035 0.008 0.053 0.880 0.880 |
& 0.861 2.119 1.758 4.931 5.093 5.093
G 1.007 9.047 | 0.982 11.733 17.742 17.742
S £ 0.900 2.122 1.550 4.046 6.481 6.481
= r 1.057 2.699 1.235 3.297 6.780 6.780
o 1.097 3.802 1.030 3.985 4.756 4.756
o 0.99 1.541 1.035 1.743 2.054 2.054
o 0.909 1.569 0.823 1.496 3.329 3.329 |
% 0.023 0.672 0.015 0.152 2.025 2.025 |

Bias estimate and the absolute relative bias are obtained for jackknife, bootstrap and
JaB as shown in Table (2), where the absolute relative bias is the absolute value of the
difference between jackknife, bootstrap or JaB estimator and the original estimator
divided by original estimator, noting that the bias and the relative bias values for
the bootstrap and JaB estimates less than bias and relative bias values for Jackknife
estimates. Also, bias and relative bias values for bootstrap and JaB estimates when
B=1000 less than when B=100, mean’s that using resampling technique when the
number of replication increases help us to obtain good estimator with low bias or

relative bias.

The E_gyptian Statisticai Journal Vol. 61, No. 2, 2017




Resampling Techniques for Estimating the Parameters of Grubbs Model 133
With Asymmetric Heavy-Tailed Distributions

luble 2 Bias estimate and the relative efficiency for all models for each resampling technique, when B = 100, 1000
AT J pling q ’

Bias Relative Bias
B | Parameter| SCN ST SSL SCN ST | SSL
N Ly 2.698 | 0.852 | -1.349 | 0.219 | 0.069 | 0.112
Z. 24992 | 16.188 | 18.673 | 0328 | 0.129 | 0.174
7 0 1.207 | -0.213 0 | 039 | 0.071
& & 0 0.284 | -0.142 0 0.399 | 0.155
g &3 0 0.852 | -0.568 0 0.269 | 0.155
E G 0 0.852 | -0.923 0 0.248 | 0.262
= % 0 0 0.071 0 0 0.129
o 0 0 0.284 0 0 0.225
o 0 -0.142 | 0.355 0 0.112 | 0.232
e 1349 | 3.976 | 9.088 | 0.271 | 0.785 | 1.562
1L 0.604 | 1.523 0.4 0.049 | 0.124 | 0.033
. 59 -3.592 | 15753 | 0.773 | 0.0287 | 0.147
& 2387 | 0.688 | 0.836 | 1.172 | 0225 | 0.281
& 0.577 | 0217 | 0.097 | 1123 | 0305 | 0.106
2 & 1963 | 0421 | 0.855 | 1.062 | 0.133 | 0.235
= & 2.27 0.48 0.99 1166 | 0.139 | 0.281
o -0.11 | -0.038 | -0.007 | 0.177 | 0.059 | 0.013
o -0.015 | 0.021 | 0.017 | 0.016 | 0.021 | 0.013
o -0.222 | -0.04 | -0.049 | 0.188 | 0.032 | 0.032
e 2.1 -0.06 | 2.029 | 0422 | 0.012 | 0.349
1L 0.948 | 1.329 0.04 0.077 | 0.108 | 0.003
L, 50.728 | -0.423 | 15253 | 0.665 | 0.003 | 0.142
L 2126 | 0932 | 0.036 | 1.044 | 0305 | 0.012 |
2 0.512 | 0303 | 0.069 | 0.996 | 0.426 | 0.075
2 i 1734 | 0.367 | 0.235 | 0938 | 0.116 | 0.064
= Zy 1918 | 0472 | 0505 | 0.985 | 0.138 | 0.144
o -0.073 | -0.007 | -0.067 | 0.117 | 0.011 | 0.122
o -0.046 | 0.047 | -0.303 | 0.052 | 0.047 | 0.239
oy -0.193 | -0.037 | -0.142 | 0.163 | 0.029 | 0.093
A -0.816 | 0.256 | 1.244 | 0.164 | 0.051 | 0.214

The information criterion values are obtained for each resampling technique , also for
each replication and for each distribution, following Montenegro et al. [2010], Zeller
ctal. [2014].Where the best distribution or the best technique is the one which have
the smallest value of the information criterion. By looking at the values for the infor-
mation criterion in Table(3), noting that the values of the information criterion values
for boostrap and JaB techniques decreases when the number of replication increases
for each distribution. Also, one can note that values of the information criterion for

Jackknife technique less than bootstrap and JaB at different replications.Values of
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the information criterion for all resampling techniques are less than values of the
information criterion for the original sample. Indicating that, resampling techniques
outperform the corresponding original sample for cach distribution, indicates that
these resampling techniques provides a better fit than the original sample. One can
say, jackknife technnique is better based on the values of the information criterion
for each distribution. But for comparing between distributions, one can note SCN-
G 1s the better distribution. Values of information criterion for JaB not shown here

because it is identical with bootstrap values at different replications.

Table 3: The information criteria values for SMSN-G models for resampling technique and each replication

Dist B Resampling methods loglike AlIC BIC HQ

Original Sample | -733.1815 | 744.1815 | 764.3278 | 752.2549
E—? Jackknife -722.949 | 733.949 | 754.096 | 742.023
7 100 Bootstrap -729.757 | 740.757 | 760.904 | 748.831
1000 Bootstrap -729.228 | 739.228 | 757.543 | 746.568
Original Sample -717.801 | 729.801 | 751.778 | 738.608
g Jackknife -707.769 | 716.769 | 733.252 | 723.375
S 100 Bootstrap - -719.314 | 731.314 | 753.292 | 740.122
1000 Bootstrap -718.310 | 725.311 735.705 | 729.534
Original sample -735.941 | 746.941 | 767.087 | 755.014

3 Jackknife 725.681 | 736.681 | 756.827 | 744.755 |
R 100 Bootstrap -728.395 739.395 759.541 747.469
1000 Bootstrap -726.442 | 735.442 | 751.925 | 742.048

In order to detect outlying observations for Barnett data, the Mahalanobis distance
can be used as a diagnostic measure to detect outluing observations, using equa-
tion(4.1). The outlying observations from original sample, jackknife and JaB when
B=100 are detected and presented in Table(4) with cutoff values adopting the cutoff
lines correspond to the quantile (§ = 0.95), noting that the observations 7, 36, 49,
72 1s the popular outlying observations for original sample, jackknife and JaB. The
main conclusion is JaB technique flagged fewer outlying observations than original
sample and jackknife technique for SCN-G models, but for ST-G, SSL-G JaB flagged

the same obsevations for the original sample.
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Table 4: The outlying obersvations for SMSN-G models for original sample, jackknife and JaB when B=100

Resampling | Dist Cuttoff | Outliers
technique
Original ST [ 13.036 | 7,36,49,62 N
Sample SSL 12375 | 7,36, 49, 62
SCN 9.488 1, 5, 10, 20, 27, 35, 36,37,
44,45, 47,48,49,52,54,
59, 62,71,72
ST | 13.036 | 7,36,48, 61
Jackknife SSL 17.792 7,48, 61
SCN 9.488 1,5,7, 10, 20,27,
35,36,43,44,46,
47,48, 51,38,61
70,71
SCN | 14.083 | 1,7,27,36,45,
JaB 47,49,52,62,72
ST 14.801 | 7,36,49,62
SSL 10.899 | 7.36,49,62

Table 5: The influential obersvations which flagged for SMSN-G models under case weight and joint perturbation
schemes for jackknife and JaB(B=100)

Perturbaton Case Weight Joint perturbation
scheme
Dist | Resampling | Cuttoff Influential Dist | Cuttoff Influential
technique observa- observationg
tions
Q Original | 0.057 19,24,38, [© | 1177 . o
£ sample 45, 56, 59 z
<L Jackknife | 0.058 19,23,37,44, | © 1.229 -
55,58
JaB 0.066 45, 56, 59 1.313 .
- Original | 0.059 19,24,38, [ | 1208 =
;‘) sample | 44,56,59 %
Jackknife | 0.057 19, 23, 37, 1.222 -
43,55, 58
JaB 0.066 38, 44,56, 1.231 -
59
o Original | 0.039 44,4559 | | 1.236 .
5} sample | c—g
w2 Jackknife | 0.039 43, 44, 58 a2 1.234 -
| JaB 0.044 |- | L1245 -
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Table 6: The influential obersvations which flagged for SMSN-G models under particular instrrument perturba-

tion and multiplicative bias perturbation schemes for jackknife and JaB (B=100)

Perturbaton | Particular instrument perturbation Multiplicative Bias
scheme
Dist | Resampling | Cuttoff Influential Dist | Cuttoff Influential
technique observa- observa-
; tions tions

& Original 0.032 - & 1.393 -
Z Z
5 sample 15
e Jackknife | 0.033 - v 1.451 -

JaB 0.052 - 1.533 -
o Original 0.035 14, 28, 32, o 1.433 -
~ sample 58 =
W - 7 =

Jackknife | 0.042 13, 27, 31, 1.442 -
57

JaB 0.052 28 ' 1.522 .
&) Original 0.032 2,53 &) 1.464 -
; sample | - s
e Jackknife | 0.032 2,52 - 1.466 -

JaB 0.041 - | |51 - B

The values of the conformal normal curvature B; using equation(5.1) for origi-
nal sample, jackknife and JaB are obtained to identify the influential observations
for Barnett data set using the local influence approach under different perturbtion
schemes. One can note from Table (5) that case weigh and under measurement
perturbation for a particular instrument perturbation schems, JaB flagged fewer in-
fluential observations than jackknife and original sample for ST-G, SCN-G, SSL-G
models. There is no influential observations for ST-G, SSL-G, SCN-G models under

joint response and multiplicative bias perturbation schemes. as seen in Tables (5, 6).

7  Conclusion

The performance of resampling techniques, namely, bootstrap, jackknife, JaB are
studied in the estimation of the parameters, detection of the outlying observations
and detection of the influential observations for SMSN-G models.The main conclu-
sion is that the use of these resampling techniques offer better fits, obtain ccurate

estimates with low bias and low relative bias, protect against outliers and influen-
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tials observations than original sample especially when the number of replication in-
creased. The nature of the JaB method needs much computation especially for larger
sample sizes.To handle this problem and also to get more accurate results which
can be implemented using sufficient bootstrap that was proposed by Singh and Se-
dory [2011] or one can implement sufficient JaB as in Beyaztas and Alin[2014a]
to reduce the computing time which becomes very important for large samples for
Grubbs model. In this paper, a single case deletion approach for jackknife and JaB.
So, the detection of the influential points is a difficult problem, especially when there
are masking and/or swamping elfects which make it difficult to flag actual influential
data points.To overcome such problems, one can implement (d-jackknife), Martin
et al. [2010] and (d-JaB), Beyaztas and Alin [2014b] for Grubbs model.
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