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ABSTRACT

Estimating the orders of bivariate mixed autoregressive moving average processes,
denoted by ARMA;(p,q), is the first and one of the most important phases in time series
analysis. This article has three different objectives. The first one is to develop an
indirect Bayesian methodology to estimate the orders of bivariate mixed ARMA
processes. Assuming the maximum orders are known, the indirect methodology is based
on approximating the posterior distribution of the model's coefficients by a matrix t
distribution. Then one may test the significance of the coefficients marginally or
conditionally and eliminate insignificance coefficients. The second objective is to
develop a pure Bayesian methodology to estimate the orders of ARMA;(p,q) processes.
The pure methodology is based on deriving an approximate joint posterior probability
mass function of the orders in a convenient form. Then one may inspect the posterior
probabilities and select the orders with maximum probability to be the estimated orders.
The third objective is to carry out a simulation study to assess the performance and
numerical efficiency of the two proposed methodologies and compare the results with
the well-known automatic technique AIC or Akaike's information criterion. The
numerical results show that the proposed indirect methodology is the best and can

- efficiently estimate the orders of bivariate mixed ARMA processes with high precision

for moderate and large time series lengths.
Keywords: Bivariate ARMA processes — Pure Bayesian identification - indirect

Bayesian identification — Posterior probability density function — Posterior probability
mass function — Matrix normal-Wishart prior— Jeffreys' prior.
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1. INTRODUCTION

Time series identification is a very important topic and may be found in many
areas of applications such as economics, business, engineering, physics, chemistry,
meteorology, ecology and environmental studies. The problem of identification is called
bivariate problem if the observations are available for a set of two related time series. In
economic, one may record spending on food y(t,1) and spending on health services
y(t,2). In meteorology, one may record temperature y(t,1) and air pressure y(t,2). In
hydrology, one may record rain fall y(t,1) and river flow y(t,2). These variables are
modeled and examined simultaneously for two reasons. The first is to understand and
investigate the nature of the dynamic relation between the two variables and the second

is to increase the precision of the estimates and forecasts.

With respect to bivariate autoregressive moving average ARMA(p,q) processes,
identification means selecting the orders p and q using the observed data. It is a fact that
the solution of the identification problem of ARMA;(p,q) processes depends on
subjective opinions as well as mathematical and statistical arguments. However, one
may say that there is no panacea for the identification problem since there is no

optimum method yet completely agreed upon.

Regarding univariate ARMA processes, one may trace two different non-Bayesian
approaches to identify the model orders p and q. The first and most favorable one is
developed by Box and Jenkins (1970). Their methodology is based on matching the
sample autocorrelation and partial autocorrelation functions with their theoretical
counterparts. The second non-Bayesian approach to identify the orders of univariate
ARMA processes is the so called automatic or exploratory approach. The foundation of
this approach is to fit all possible ARMA models and compute a certain criterion for
each model; then one may choose that model which minimizes the criterion. However,
one may note that there is no agreement on the criterion to be minimized. The most
popular automatic criterion AIC or Akaike's information criterion was introduced by
Akaike (1974). For more details, the reader is referred to Schwarz (1978), Mills and
Prasad (1992) and Beveridge and Oickle (1994).

On the other hand, the Bayesian methods of identification of univariate ARMA
models are being developed. However, for well-understood reasons, most of the
Bayesian publications focus on the analysis of pure autoregressive models and pay

little attention to mixed ARMA models. This void in the Bayesian literature for the

mixed processes is due to the complexity of the likelihood function of such
processes.
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Monahan (1983) has given a numerical algorithm to handle the estimation
problem of the orders of ARMA processes. Broemeling and Shaarawy (1988) have
developed an approximate Bayesian technique to estimate the orders of mixed ARMA
processes. Shaarawy and Ali (2003) have developed a Bayesian technique to estimate
the orders of seasonal autoregressive processes. More recently, Shaarawy et al. (2007)

have developed an approximate pure Bayesian methodology to estimate the order of

pure moving average processes.

With respect to the bivariate and multivariate version, the identification problem,
from non-Bayesian view point, has been studied by Tiao and Box (1981) and Tiao and
Tsay (1983) by matching the cross-correlation functions computed from the data with
theoretical counterparts. On the other hand, the Bayesian methods of identification of
bivariate and multivariate time series are not well-known. Shaarawy and Ali (2008)
have introduced a pure Bayesian technique to identify order of multivariate (vector)
autoregressive processes. Moreover, Shaarawy and Ali (2012) have developed a pure
Bayesian methodology to identify the order of vector moving average processes. Most
recently, Shaarawy and Ali (2015) have developed a pure Bayesian methodology to
identify the orders of vector seasonal autoregressive processes. However, one may say

that the Bayesian approach to estimate the bivariate mixed ARMA processes have not

been explored yet.

The main objective of this article is to develop two convenient methodologies to
estimate the orders of bivariate mixed ARMA processes. The first methodology,
denoted by the indirect one, is based on approximating the posterior distribution of the
model coefficients by a matrix t distribution. Then one may test the significance of the
coefficients marginally or conditionally by a series of F-tests in a similar fashion to the
backward elimination procedure used in regression analysis. The second methodology,
denoted by the pure Bayesian one, is based on deriving an approximate joint posterior
probability mass function of the model orders in a convenient form. Then one may
inspect the posterior probabilities and select the orders at which the joint posterior mass
function attains its maximum. A wide simulation study is conducted, using the modern
specialized SCA package, in order to examine the numerical efficiency of the proposed

Bayesian methodologies and compare results with the well-known automatic technique

AIC or Akaike's information criterion.
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The rest of this article is structured as follows: Section 2 gives the definition of
the bivariate mixed ARMA processes in scalar and matrix notations. Section 3
constructs the conditional likelihood function of the parameters of the mixed
ARMA,(p,q) processes. Section 4 develops the proposed indirect Bayesian technique to
estimate the orders of ARMA;(p,q) processes. Section 5 explains the idea of the
proposed pure Bayesian procedure to estimate the orders of ARMA,(p,q) processes.
Section 6 is devoted to examine the numerical effectiveness of the proposed indirect and
pure Bayesian procedures in estimating the orders of bivariate mixed processes. The

performance of the proposed Bayesian procedures is compared with the well-known
AIC technique.

2. BIVARIATE AUTORGRESSIVE MOVING AVERAGE
PROCESSES

Let {t} be a sequence of integers, pe {1,2,...}, g€ {1,2,...}, O; (i=1,2,....p) are
2x2 unknown matrices of real constants, ®; (i=1,2...,q) are 2x2 unknown matrices of

real constants, {yi} is a sequence of 2x1 real observable random vectors and {g} is a

sequence of 2x1 independent and normally distributed unobservable random vectors
with zero mean and a 2x2 unknown precision matrix. Then the bivariate autoregressive

moving average process of orders p and ¢ is defined for n vectors of observations as

@,(B)y(1)=0,(B)e (¥) 2.1
Where

©,(B)=L,-4B-4B>—=4B" w0 =[pc) ],

?

©,(B)=1,-0B-0,B> - —6B" and £(t)=[e(tl) £(1,2)]

[ is the identity matrix of order 2, and B is the backward shift operator defined by B’
¥(t) = ¥(t-r). The 2x2 matrix polynomial @,(B), of degree p in the backshift operator B,
is known as the autoregressive operator of order p, while the 2x2 matrix polynomial
®,(B), of degree g in the backshift operator, is known as the moving average operator
of order g. The process y(t) is stationary if all the roots of the determinantal equation

|@,(B)[=0 lie outside the unit circle, while the process is invertible if all the roots

determinantal equation |®,(B)|=0 lie outside the unite circle.

The Egyptian Statistical Journal Vol.60, No.1, 2016




Estimating the Orders of Bivariate Mixed ARMA (p,q) Processes Using Bayesian
Approach.

n

Consider a special case, the ARMA,(1,1) with coefficients
T 0, 0,
4= { Lo | ma 0=g=] R
¢2} ¢22 02] 922
Then the model (2.1) can be written as
(I=¢B)y(s) =(1-0B)e(r)

Where y; and € are defined above,
[—d B = L0 _ ¢,|B #,B . lﬁféuB _¢IEB
0 1 ¢ZIB ¢ZEB Af‘?jle 1_¢228
And
L o] [6,B 6,B] [1-6,B -0,B
[-6B = = P = ’
0 1} [6,B 6,B] | -6,B 1-0,B

Thus, one may write the observations of the ARMA(1,1) process as

YD =3 = LD+ Gt =12)~ 6,60 L) = 0,(t ~12) + (5,1

2.2

WE2) =gy Yt = LD + gyt =1,2) 0,8t ~ 1)) —0,,6(t —1,2) +£(¢,2) @2
However, the model (2.2) can be written compactly for n observations as

YO =e()+ gy(t-1)-0s(t~1),  (=1,2, .. n (2.3)

Where

L y(e-LD |l e-1D
ye -1 = L}([_l,z)jl and  g(r-1) _L(tﬁl,Z)}

Here we consider y(t,1) and y(t,2) as dependent variables, while y(t-1,1), y(t-1,2),

&(t-1,1) and &(t-1,2) are considered as input or independent variables.
In general, one can write the ARMA,(p,q) process as

V) =e(O)+ gyt =1)+ gy(t =2)+ ..+ ¢, )t — p)

~0,6(t=1)=0,6(t~2)~...~ 6,6t - q) 24

Conditioning on the first p vectors of observations, the model (2.4) can be rewritten

in a more compact expression as
Y=XT+U (2.5)

Where Y is a matrix of order (r-p)x2 with ij™ element equals y(pHi, j), i =1,2,..., n-p; j =
1,2. That is
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V=V o =D+ w(p+2) . y(0)]
The matrix X is of order (n-p)x 2h, h=p + q, defined by

X:X(.,_pw, :[X, Xz] where

o) Hp-h . YO e —£(-D .. —£(p—qtD]
ijy'(;?ﬂ) y'(:p) y'€2) and X —5’({7“} ﬁs’(p) —&J(p:—q+2)
V-l Y-2) ... Yin-p)|, ., | —€n-1) —€(n-2) ... -£n—g bepreg

Furthermore, [ is the 242 matrix of coefficients defined as follows

47 ] A
H ¢2' 9;
C=|---| where, y, =| - and  y, =|--
V2 :
I_¢P_gp.<g qur'_qul

i P g, 8
44:[ C T, i=L2,p and O=| Y TP i=12,..g
¢r’.2 | ¢i.22 9:.21 9&22

The class of bivariate ARMA models (2.5) is an extremely useful, flexible and
practical to model and forecast two correlated time series arise in many areas such as
business, economics, industry, chemistry, ecology and meteorology. The class
ARMA;(p,q) allows for general dynamic relationships between the two series in the
system. [n economics, for instance, one knows that a certain rise in prices will generally
lead to some rise in wages, which in turn lead to a further rise in prices. Thus, modeling
a univariate model for each series is not appropriate. Instead, a bivariate model will be

more satisfactory to model and forecast the prices and wages simultancously.
A specific diagonal element of the lag matrix @;, say @j, shows how an individual
series r is affected by its own past y(t-i, r). For example the element @, || reflects how

y(t.1) is affected by y(t-2,1). An off diagonal element of the lag matrix ¢, say @j,

reflects the influence of the series j on the series r. For example, @, 5 reflects
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how y(t,1) is affected by y(t-2,2). The elements of the lag matrix 0; are interpreted

in a similar way.

3. THE CONDITIONAL LIKELIHOOD FUNCTION
In order to achieve our main goal, let S,=[y(1) ¥(2) ... y(n)]' be a matrix of nxY
observations generated from the bivariate ARMA process of orders p and g of the form
(2.5) where the orders p and ¢ are unknown positive integers. Conditioning on the first p

observed vectors, the likelihood function of the parameters I'(p,q), p, g and T'is

ZAazp) o (n-p) i
LT (p.9). .. T1S, ) @) 2 |T] 2 exp[—'zfrZS(r)a’(f)TJ G.1)

f=p+l

Where ['(p, q) € R*?;T>0,p=12,..., P;q=1,2,..., Q where P and Q are the

largest possible orders of the process.

If n is large relative to p, as it usually is, the conditional likelihood function serves
as a good approximation to the exact likelihood function, see Priestley (1981). In

general the conditional likelihood function (3.1) is very complicated because the

disturbances &(t) are non-linear functions of the coefficients @; and 8;. To see this, one

may write the disturbances of (2.5) as
e')=y't)-X,,¢-Dl(p.q), t=1,2,...,n (3.2)

Where
X ()=l ye-D Y2 ... ye-p) —£C-D) -2 ... -9

Thus, one may write the m™ component of the residual vector &(t) as

g(t, m)= y(t,m) —iZ;ﬁhwy(t fk,j)+zl“20k &=k, J) 5 m=1, 2 (3.3)

k=t j=I k=1 j=i

The expression (3.3) is a recurrence relation for the residuals. This recurrence
causes the main problem in developing the exact Bayesian solution for the identification
problem of the bivariate ARMA processes. However, (3.3) can be used to evaluate the
residuals recursively if one knows @j's, 0's and the initial values of the residuals. Using

(3.3), the conditional likelihood function (3.1) can be written as
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) g "
L(f‘(p,q),p,q,ﬂSn)oc(Q;r) 2 |11 ex{——;trZH(f(p,q),p,q,t)T} (3.4)

[=p+l

Where H(I'(p, q),p,q,t) = (hrs) is 2%2 matrix and

2

|i l—r Zuyf kj¢kq+zz ku}

k=l =l k=l j=t

{y(r—s)—iiy My + 3l k»f')ﬂkﬁ}

k=1 j=I k=t j=1

(3.5)

The form (3.5) is not quadratic in the parameters @'s and 0’s because e(t-k,j)isa
function of @'s and 0's through the recurrence formula (3.3). If &(t-k, j) are known,
H((p.9).p.q.t) would be a quadratic from in the parameters. The proposed
approximation is based on replacing the exact residuals g(t) by their least squares

estimates. The least squares estimates, say &(¢), are obtained by searching over the

parameter space for the values of ¢ and 6, say @g and 0y, which minimize the residual

sum of squares Zéz(t,i) , 1=1,2. Before doing this process, one should have initial
!

adequate values for the orders p and ¢. [t is proposed to obtain such values, say po and
go by the indirect Bayesian technique presented in the next section. The least squares
estimates (pp and Op and the assumed initial values, namely zero, are then substituted in

(3.3) to obtain the least squares estimates of the residuals recursively. Substituting these

estimates in X', 4(t-1), one can write (3.2) as
E(Ny=y'W)-X, . (t-DI(p.q) (3.6)

Where ¢ =1,2,....n and )A(;M" (t—1) is the same as X;nlqu(f%) but using the

residuals estimates instead of the exact ones. Using the estimates of the residuals, one

may rewrite the conditional likelihood function (3.4) approximately as

“2n-p) n-p

S,)e@r) |17

L'(C(p,q) prq,T 5.5

f=p+l

exp[— s SO -T 00X - DIbO T, (- ”]'TD

An appropriate choice of the conditional prior of I'(p,q) given p, g and T'is
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4h

g(r(p,q)[p,q,T)= (27) *

2h

T

2
2

R(p.q)

GXP[* éff[[F(p,q) -D(p. )| R(p.a) [[(prq) - D(p,q)lf})

Where the hyper-parameters D(p,q) € R*" and R(p,q) 1s a 2A%2h positive

definite matrix. The precision matrix is assigned, a priori the Wishart distribution

1)< 17 exp| - o]

Where,  is a 2x2 positive definite matrix. Thus, the joint prior distribution of

['(p,q) and T given p and ¢ is assumed to be
& (.0 T|p.a)< &,(C(p.)|p..T ), (1) (3.9)

The class of prior distributions (3.9) is called matrix Normal—Wishart class of

distributions. Let f3jj be the prior probability mass function of the orders pand g, ie.
B,=Ptlp=ig=j]; i=12,..,P:j= 1,2,..., 0 (3.10)

From (3.9) and (3.10), the joint prior distribution of the parameters [ '(p,q), T, p
and g is

4h 9

g(C(p.q).p.q.T)= B,(27) *

[Zh+a—3]

R(p, )2 |T|

exp(— %tr{[l“(p,q) - D(p. )| R(p,)[T(pq) - D(p,q)]w}?‘] (3.11)

I[f one can't or unwilling to specify the hyper-parameters D(p,q), R(p.q), a, \/ and

i, one might use jeffreys vague prior

=3
2

g(T(p.9), p.q.T)x|T

(3.12)

4. INDIRECT BAYESIAN METHODOLOGY
The ARMA,(p,q) class of models is quite useful in modeling and forecasting the two
dimensional time series data and frequently p and g are not excess of 2. In practice the
values of the orders p and ¢ are unknown and one has to estimate them using the
observed n vectors of 2x1 observations. The pure Bayesian approach to estimate the
orders p and ¢ is to find the joint posterior probability mass function of p and g and

choose the orders at which the joint posterior mass function attains its maximum.
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The approach taken here is somewhat different from the pure Bayesian approach.
[nstead of working directly with joint posterior distribution of p and g, it is proposed to
focus the marginal posterior distribution of the coefficients

[ ¢,
¢,

I_l.'
¢ ® (4.1

L

<1

10
a, o

Where @; is a square matrix of order 2, i=1,2,...,P, while QJ- 15 a square matrix of
order 2, j=1, 2,...,0. The maximum orders P and Q are assumed to be known. The

conditional likelihood function of the parameters @, ® and T'is

Sn)oc ’T|% exp('ztr{ ig(t) g'(t) TH (4.2)

L(®,0,7

(=p+l

Where,® € R*"™, ® € R?®?, T'is a positive definite matrix, and
e)=y'O)-X-DT | =12,..n (4.3)
Where

X@-D=ly-) yt-2) ... yt-P -1 -£¢-2) ... ~£(t-0)

The expression (4.3) is a recurrence relation for the residuals and the m™ component of

the residual g(t) can be written as

p 2 Q 2
5(f=m):y(tsm)_Zzgﬁk_mjy(t7k>.j)+zzgk_mjg(t_k’j) ,m=1,2

k=1 j=1 k=1 j=I
(4.4)
The recurrence relation (4.4) causes the main problem in developing the exact
Bayesian analysis of the bivariate ARMA processes. However, this recurrence may be
used to evaluate the residuals recursively if one knows @, ® and the initial values of the
residuals. The proposed approximation is based on replacing the exact residuals by their
least squares estimates and assuming that the initial residuals equal their means, namely

zero. Thus, we estimate the residuals recursively by
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0

~ 2 ~
Zgék.nyy([ﬁk’j)_{_ ngy'g(t*kvj),mzl,Z

2
Jj=1 k=1 j=1

D

é(f,m) . y(f,l’l‘I)—
k=1
(4.5)

AN AN
Where t=1,2,...,n; m=1,2 and @y and &,y are the nonlinear least squares estimates
of the parameters ¢k_mj and 9,{‘,,,]- - Using the estimates of the residuals, one may
rewrite the conditional likelihood function approximately as

L(®0,1s, )t > ex{—;tr{ ST -TR ][y -k - | TB (4.6)

=p+l

Where X (£—1) is the same as X(#-1) but using the estimated residuals instead of the
exact ones.

An appropriate choice of the prior density of the parameters | and 7 is the

following matrix normal—Wishart distribution:

(. 7)=¢(fr)e, () @.7)
Where

r+Q

ECIT )| T2 exp [—;tr{[l“ -plwir- D]T}J

And

fz(T)oclT |—2; exp (ﬁ ;—tr wT]

Where the hyper-parameters D € R*(F+@)<2 , Wis a 2(P+Q)x2(P+Q) positive

definite matrix, a > 0 and \y is a 2x2 positive definite matrix. If one has little

information about the parameters, a priori, he may use Jefferys' vague prior.
=
E(C,T)ec|T|?, e R*FrOX2 1oy (4.8)

Theorem 4.1

Using the approximate conditional likelihood function (4.6) and the matrix normal—
Wishart prior density (4.7), the marginal posterior distribution of I is a matrix t
distribution with parameters (4" B, 4™, C-BA™ B, v). Where

A=W+ 2 2-DXC-D,  B=wD+ T 2(c-1),0) .

1=P+1 1=P+|
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C=D'WD+ Y y(6)y'(6) ,and L=n-P+a—1
(=Pl
Corollary 4.1
Using the approximate conditional likelihood function (4.6) and Jeffreys' prior (4.8), the
marginal posterior distribution of I is a matrix t distribution with parameters (4" B, 47",
C-B'4™" B, v). However, the quantities 4, B, C and v will be modified by letting W—0
(P+O)*2P+D)), a — -2(P+Q), and y — 0 (2%2).

The reader is referred to Box and Tiao (1973) for the form and properties of the
matrix t density function. Since [ has a matrix t distribution, any subset of rows has a
matrix t distribution; particularly the marginal posterior distribution of the matrix @ of
@ is a matrix t distribution. In addition, the conditional distribution of any subset of
rows given any other subset of rows is a matrix t distribution. Furthermore, one can test

any subset of rows to be zero (marginally or conditionally) using F statistics. The forms

of the F statistics can be found in Box and Tiao (1973, pp.451-455).

The following diagram, figure 1, gives a binary decision tree which depicts paths
by which a particular ARMA,(p,q) is selected assuming P = Q = 2. Thus for example,
one first tests 0, = 0 and if rejected tests @ =0, and if not rejected tests @ =0 given
(2=0, which if rejected then concludes the model is an ARMA,(1,2). The hypothesis 0,
= 0 is tested using the marginal distribution of 0,, which is a matrix t, and the
hypothesis @ = 0 is tested with the marginal distribution of @5, but the hypothesis ¢ =
0 is tested using the conditional distribution of @ given @, =0, which is also a matrix t.
The decision procedure begins with the moving average coefficient 0, and if it is
decided that B, # 0, switches the test to the autoregressive parameter ¢, =0. It is

somewhat arbitrary to begin with the moving average coefficient instead of the
autoregressive part, but it was felt that the moving average coefficient should be given

the first opportunity to be eliminated.

In general the proposed indirect Bayesian procedure to identify the orders p and ¢ is

continued in this fashion until the two hypotheses Hy: 19% =0 and Hy: ¢ﬁu =0 are
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rejected for some go and py where 0< gp < Q and 0 < py < P. The values poand gg

are the proposed indirect Bayesian estimates of the orders p and q of bivariate mixed
ARMA processes.

FIGURE 1:
Decision Tree For Identification of ARMA,(p,q) Process
Assuming P=Q =2

(6) i
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S. A PURE BAYESIAN IDENTIFICATION METHODOLOGY
Given the initial values py and g, the main objective of this section is to develop an
approximate Bayesian procedure to identify the orders of bivariate ARMA processes.
Unlike the indirect technique, outlined above, the orders p and g are assumed to be
random variables and the problem becomes how to find their joint posterior probability
mass function in an easy and convenient form. Combining the approximate conditional
likelihood function (3.7), via Bayes theorem, with the prior distribution of the
parameters (3.11), one may write the joint posterior distribution of the parameters

I'(p,q), p, g and T as
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- :
f(r(P’Q')aP,q,ﬂS ) ’BU (2]1‘)-~( IR(p,q)IZ |T| 2 CXp(—-;—[i"
([C(p.a) - D(p. )] R(p, ) [Cp ) - Dlp) 4% + (5.1)

> b - ()X, , -l - T () X, -]y

Where  a(p, q) = n-p+2hta-3 (5.2)
Theorem (5.1)

Using the approximate conditional likelihood function (3.7) and prior distribution

(3.11), the joint posterior mass function of the orders p and ¢ is

)
Hp.qls, ) B,(x)"|R(p. ) Ao, 9] (o) Hr(%), n> h-atl

7=l 2
Where
A(p.q)=R(pq)+ Y X, ¢t -DX. (t-1),
f=p+l
B(p.q) = R(p,q)D(p,q)+ Y. X, (t-1)y'(¢)
i=p+l
And

C(p,q)=D'(p,q)R(p,q)D(p,q) +y + iy(f)y’(r) - B'(p,q)4™ (pq) B(p,q)

t=ptl

Theorem 5.2

Using the approximate conditional likelihood function (3.7) and the non—informative

prior distribution (3.12), the joint posterior probability mass function of the model

orders p and ¢ is

Hoiez2a o ~3p+2g+j-2
Al lc e T[rd7 L

h(p.glS, )oc ()"

m>1+3p+2g
Where

A(p,q)= ZXM(r DX, (-1

r=p+1

B(pg)= XX, -y and

=p+]

C'(p,q)= iy(f)y'(f%B'r(p,q)A"' (p,)B (p.q)

t=p+l

The forms of the joint posterior probability mass function given by theorems (5.1)
and (5.2) are convenient and easily programmed. Then, one may inspect the posterior

probability mass function over the grid of the orders p and ¢ and select the values at
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[#3]

which the joint probability mass function attains its maximum to be the identified

orders of the bivariate time series being analyzed.

6. THE EFFECIVENESS OF THE STUDY

One of the main objectives of this article is to study the effectiveness of the proposed
two Bayesian identification methodologies, namely the pure and the indirect ones, in
solving the identification problem of Bivariate mixed ARMA processes. In order to
achieve this objective, two simulation studies have been conducted. The proposed two
Bayesian methodologies are employed, with three different prior distributions, to
identify the orders of VARMA,(1,1) and VARMA,(2,1) processes. All computations

were performed on a PC using the most modern package SCA.

Our main concern is to study the numerical efficiency of the proposed two
Bayesian methodologies by calculating the percentages of correct identification for cach
one. Such efficiency will be examined with respect to the time series length (n). Note

that, the variance-covariance matrix of the noise term is fixed at

Simulation I, as an illustration, begins with the generation of 500 data sets of
bivariate normal variates, each of size 500, to represent e(t,1) and &(t,2) respectively.

These data sets are then used to generate pairs of 500 realizations, each of size 500,
from VARMA,(1,1) process with

(D:[O.l 0. 1} i @:[0‘2 0.2}
0.1 0.1 02 02

Assume that the starting values are zeros. The first 200 pairs of observations ¥t 1)
and y(t,2) are ignored to remove the effect of the initial conditions. Thus each generated
realization will be of size 300. For a specific prior, the second step 1s to carry out all
computations, assuming the maximum orders P=2 and 0=2, required to identify each of
the 500 realizations and finding the percentages of correct identification using each of
the two proposed Bayesian methodologies. It might be important to mention that the
computations of the pure Bayesian methodology include the application of indirect

Bayesian technique in order to get adequate initial values po and go. Such computations

are done for a specific time series length n using the first n observations of each
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generated data set. This second step is repeated for each chosen time series length
and prior combinations. The time series length n is taken to be 50,100,200 and 300.
With respect to the prior probability mass function of the orders p and g, which is
combined with the non-informative prior of 1'(p,q) and T defined in (3.12), the

following priors are used:

Prior 1:
yis 1 X 1 =1l 1520
L i=1,2,...,P; j=1.2,...,
y P Q j
Prior 2:
B, < (0.5) ,  i=12,..P; j=12,.,0
Prior 3:

BH: 0.35 s B[gz Bg[z 0.25 : Bzz =0.15 for P:Q:2

The first prior assigns equal probabilities to all possible values of the orders p and
q. The second prior is chosen in such a way fto give probabilities that decline
exponentially with the orders p and g, while the third prior is chosen in such a way to
give probabilities that decrease with an absolute amount 0.1 as the orders increase.

Simulation II is done in a similar way but for ARMA(2,1) with

05 -04 04 02 -0.1 04
CDI = , (Dj = and. ®$ =
-04 03 105 =05 -0.3 05

The results of simulations [ and II are reported in tables 1 and 2 respectively. For
each simulation, the percentages of correct identification using the two proposed

Bayesian techniques as well as the well-known AIC are reported in the same table.
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Table 1: Percentages of Correct Identification of the Proposed
Bayesian Methodologies and AIC for Simulation I

PARAMETERS | n | INDIRECT ';;'g}gg gg}gg gg}gg AIC
@ 2[0.1 0.1] 50 78.0 3.8 5.8 4.8 40.2
'lor o0t 100 70.6 9.6 14.0 11.4 39.8
P—— 150 72.8 19.0 24.0 20.6 39.6
0,=|." : 2 &
1 [0.2 0.2] 200 77.0 25.4 33.2 28.8 45.0
300 78.8 29.4 38.0 32.8 50.4

Source: Simulated Data

[nspection of the results, given in the above table, shows an increasing trend for
cfficiency of the proposed pure Bayesian methodology as the series length #
increases. In addition, the percentages of correct identification achieved using the
indirect Bayesian methodology are higher than those obtained by both the pure
methodology and the AIC. Moreover, the percentages of correct identification
achieved using the third prior in the pure methodology is higher than the
corresponding percentages achieved using the first prior, while the corresponding

percentages achieved using the second prior are the highest among the three priors.

The results of simulation II are reported in table 2. The reader can notice that

these results are similar to those given in table 1.

Table 2: Percentages of Correct Identification of the of the Proposed
Bayesian Methodologies and AIC for Simulation IT

DIRECT DIRECT DIRECT
PARAMETERS n | INDIRECT AIC
PRIOR1 PRIOR2 PRIOR3
o =[%> ¢ 50 32.0 26.8 30.8 30.2 40.2
0, =[04 02 100 63.2 32.6 38.4 37.8 48.6
0 b= 150 75.8 33.4 36.4 35.8 59.0
@lz[:g-; 04 200 75.0 34.2 35.2 35.0 57.4
o 300 70.4 34.8 35.2 35.2 62.0

Source : Simulated Data

Considering the above comments, one may say that the numerical results
support the adequacy of using the proposed two Bayesian methodologies in
estimating the orders of bivariate mixed ARMA processes when a moderate or a large

time series length is used.
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