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ABSTRACT

The current article approaches the Bayesian prediction of moving average
processes using three well-known priors; g prior, natural conjugate (NC)
prior, and Jeffreys' prior. The main goal of the study is to derive
approximate one step-ahead predictive densities for moving average (MA)
processes using each of the above mentioned priors. However, the basic
contribution is the derivation of the predictive density based upon the g
prior. [nvestigating the performance of the three one step-ahead predictive
densities is performed via comprehensive simulation studies using MA(I)
and MA(2) processes for illustration. The simulation results show the
equivalence of the performance of the three one step-ahead predictive
densitics based on the three considered priors in the lorecasting process.

Keywords: Forecasting, Prediction, one step-ahead predictive density, Moving
Average process, g prior, Jeffreys' prior, natural conjugate prior, Informative prior,
Non-informative prior.

1. INTRODUCTION
Many real time series in the literature are identified to follow moving average
(MA) models as found in economics, business, medicine .. .ete (Frederick (2000),
Gyllenberg and Koski (2002), and Singh (2006)). Analyzing lime series using the
Bayesian approach is rapidly becoming accepted as a way L0 solve applied statistical

problems. Prediction is usually the ultimate goal ol time series analysis and is the

' The permanent position of the second author is Department of Statistics, Faculty of Economics and
Political Science, Cairo University.

The Egyptian Statistical Journal Vol. 62, No. 1, 2018




3( - Sdmu f\i._&im‘n‘mi‘y_ l< nuldTmA Solundn &-[[L{);! LA L.A. Shdhm -

phase of interest in the current article. The Bayesian tool to predict the first future

observation is the one step-ahead predictive density.

The earliest standard reference for Bayesian analysis is that of Zellner (1971)
in which he has derived both the posterior and predictive densities for the AR(1)
model and the posterior density for the AR(2) models using Jeffreys’ prior. Monahan
(1983) has asserted an important contribution to solve the problem of non-linearity
ol the errors in the model's coefficients in low order autoregressive moving averave
(ARMA) models by developing a numerical technique that implements the
identification, estimation, and forecasting phases. Broemeling and Land (1984) and
Broemeling (1985) have derived the one step-ahead and the more general k step-

ahead predictive densities of the AR(p) model using the normal-gamma prior.

Using normal-gamma and Jeffreys' priors, Soliman (1999) has derived the
approximate one step-ahead predictive densities for both ARMA and scasonal
ARMA (SARMA) models. In the current article, the predictive densities of MA(q)
based on a Natural Conjugate (NC) prior and Jeffreys’ prior are to be derived as
special cases of Soliman (1999) derivations. Soliman (2008) has studied the
numerical efficiency of three approximate one step-ahead pl'e,diétive densities for

ARMA models using three different approximations based on Jeffreys’ prior.

El-Zayat (2007) has investigated the performance of the posterior densities of
AR(1) models via simulation studies. In the derivations of the posterior densities, she
considered the NC and the Jeffreys’ prior in addition to the g prior. She concluded
that informative priors are more efficient than non-informative priors, in terms of a
certain efficiency criterion, for estimating the coefficients of a stationary AR(1)
model. Moreover, Shaarawy et al. (2010) have employed the above mentioned three
priors to derive one step-ahead predictive densities for AR models and studied the
numerical effectiveness of each prior. Furthermore, Al-Bassam et al. (2013) have
considered the above mentioned three priors in solving the identification problem of
moving average processes. More recently, Shaarawy et al. (2015) have investigated
the effectiveness ol the three priors in solving the identification problem of

auloregressive processes.
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Importance of the prior selection phase has been an outstanding issue in time
series literature. The prior distribution represents initial beliefs about the model
paramelters. There are two sorts of priors; informative and non-informative priocs. A

non-informative priot is used when there is little or no information about the model

parameters otherwise; an informative priot is used (see DeGiroot (1970)).

[n 1961, Jeffreys introduced the non-informative Jeffreys™ prior to overcome
the lack of invariance in the preceding introduced priors. Raiffa and Schlaifer (1961)
among others discussed the informative family of conjugate priors, which is a widely
used approach. The natural conjugate (NC) prior belongs to this class and its form,
by definition, depends on the form of likelihood function (LF). Difficulties in
assessment of NC prior lie in the estimation of its hyper-parameters. Estimating the
hyper-parameters can be performed using several techniques such as those discussed

by Raiffa and Schlaifer (1961), Berger (1983), Broemeling (1985), and others.

[n 1986, Zellner introduced the g prior that may be considered as a middle
ground of sorts between informative and non-informative priors (Karlsson (2001)).
To estimate a g prior, one should determine a value for a related constant g (for more
details see Robbins (1956) and Fernandez et al (2001)).

[n the next section, the moving average models arc defined. [n section three,
the principal tools and concepts used in the study are simply explained. In section
four, the predictive densities based on the three proposed priors are derived.
Moreover, section five develops wide scale simulation studies. Finally, section six

summarizes the study findings and concludes.

2. MOVING AVERAGE MODELS

The moving average model of order g, denoted by MA(q), is a special case of
the ARMA(p,q) model. The model can be written as follows (Box and Jenkins

(1970)):
¥, = 0(B)e, (2.1)

Whete, O(B) = 1 — 6;B — 0,8 — -+ — 0B
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Where, B is the backshift operator such that B/ y, = Vi (v, 6 =, =1,001,...} is
the time series. £,'s are assumed to be i.i.d. normally distributed random errors with
" — o L - o T st e AR
mean zero and variance T °, where t = 1/d° > 0 is the precision parameter. 0;s

are the model coeflicients. The model (2.1) can be presented explicitly as follows:

Ye =& Oy Operg o g8 (

2
(R0
—

Moving average models are always stationary, while they are invertible under
some conditions. The invertibility conditions are such that the roots of 9(8) lie
outside the unit circle. Special cases of (2.2) are the MA(1) model given by

W =8y =848, (

2
(W)
—

And the MA(2) model given by
Vi =& =018 — 058 (4]

For MA(1) model the invertibility condition is |8,] < 1 and for MA(2) model,
the invertibility conditions are 6, — 8, < 1, 8, + 8. < 1, and :8,| < 1. (Box
and Jenkins (1970)).

3. BASIC CONCEPTS

Derivation ol the predictive density depends on both the Likelihood Function
(LF) and the prior distribution which are both defined hereafter. Given a time series
of n observations ¥ =y, y2 ... y,] and letting the initial error values

& =€, ==¢,=0, ie. they equal their unconditional mean, the conditional LF for

the MA(q) model, conditioned on the initial values of the errors, can be written in the

form (see Broemeling (1985))

i r & q
Liy,e|Y) e r’cxp%—EZm +2,08.,) (G.1)
r=1 /=1
Where, 7 is the precision paramelter, ) is the vector of observations such that,
Y=1y1 y» ... ol and y:is the coefficients' vector defined as
i , N
¥ =16 8, 8,] (3.2)

Let X be an nxq matrix of regressors such that the ™ row vector X, is represented by
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--&‘,,2...»—51_({] (=1,2,....n (3.3)

Then, (3.1) can be written (n matrix notation as

n

Ly, 7 L)oo} exp {— :i—(?f. Sxp)e-x 7_)} (3.4)

The conditional LF (3.4) is analytically intractable since the ecrors of MA
models &'s are nonlinear functions in the coctficients. Broemeling and Shaarawy
(1988) have approximated the errors of the MA model as linear functions in the
model's coefficients by their non-linear least squares estimates €,'s . Thus, the

conditional LF (3.4) can be approximated by

n

% I v 5 r ; ) ' ; v g
L(re 0 e exp { S xo)le- gy )} 6.5)
Where, X is the estimated matrix of regressors for which the M row X, is given by

{Y_l = [77{3;”[ - é‘(.] _"E:’\‘] _m] (36)

Lipelf)= “"’"’Jl_‘fl?-%z_“ 2/ B, +C, j]. (3.7)
Where,
At = /“{if{\( y ﬁl = /‘\Y'K and CI = EK (38)

[n addition, X and Y are as defined above.

Regarding the g prior, it is considered as a middle around ol sorts between the
informative NC prior and non-informative Jeffreys’ prior (Kaclsson (2001)). [t was
developed by Zellner (1986) to avoid the evaluation of prior covariates of the hyper-
patameters which is found in the NC prior. Zellner's motivation was to derive an
appropriate prior for the regression parameters in the General Linear Models (GLM).

Shaarawy el al. (2010) have derived the joint g-prior ol y and g tor MA(q)
model in the form

jod = s
p,(7,0) % ol exp{r 7707(2{ ) XX (y - y)} _ (3.9)

207
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Whete, y is defined in (3.2), ¢ is the ervors variance, y is an anticipated value ofy

. 5 p tl ~ .
and X is the matrix of regressors of MA(q) model with (" row X, defined in (3.3).
There are many potential values given in the literature for the constant g,
mostly ¢ is considered as a function of the sample size n or the number ol the

parameters k. Fernandez et al. (2001), based on a simulation study, concluded that the

most reasonable choices of the value of g are as follows:

| . .
g=— for n>k

r?l (3.10)
g= A’ for n <k’

[t should be noted that when the sample under consideration follows a normal
distribution, the normal-gamma priot is the NC prior and is written for MA(q) model

as follows:

- R V(o
=l =Sl elp=a N (x ~g)

ply,t)ct e’ , 520, (G.11)
where a, £, 1 , and V are the hyper-parameters of the prior distribution.
[n addition to the above two priors, the Jeffreys' prior introduced by Jeffreys

(1961), is given by:

ply.t)ecz™ (3.12)

The current study is interested in Bayesian prediction of MA models based
on g-prior, NC prior, and Je{freys' prior. The Bayesian tool to predict the first future
observation y, is the one step-ahead predictive density p(y, ., | ¥) which is

defined as follows (Shaarawy and Broemeling (1984)):

P D)< [[ p(ynXlyo) ply.rydedy (3.13)

¥ E

4. APPROXIMATE PREDICTIVE DENSITIES OF MA MODELS
The main goal of this section is to derive the approximale one step-ahead

predictive density for the first future observation of MA(q) models using the three
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above mentioned priors; g prior, NC prior, and Jeffreys' prior. The section is divided
into two subsections; the first 4.1 is reserved for the derivation of the approximate
one step-ahead predictive density based on g prior, the second 4.2 is reserved for

displaying the derivation based on both the NC and Jeffreys' prior.

4.1. Derivation Based On g Prior
In this section the moving average model MA(q) will be considered as a

special case of the standard GLM. The model can be written in a matrix notation as

Y =Xy+¢g (4.1)

Where ¥ =[y, ¥, - .1, E=[8 & ¥ ", s the coeflicients' vector

H
defined in (3.2), and finally X, isthe matrix of regressors such that the I
observation y, is represented by,
B =Y Fly g F=l, 2, .enfls

where &, is the (" error, and the /M row vector X, is delined in (3.3).
Further, define the row vector X1 by letting t =n +1 in X defined in (3.3).

The following theorem gives the approximate one step-ahead predictive
density of the first future observation generated from the MA(q) model (2.1) based

on the g prior on the form (3.9):

Theorem 4.1:
Based on g prior on the form (3.9), the approximate one step-ahead predictive density
of the MA(q) model is a non-central ¢ distribution, with (n+g-1) degrees of freedom,

location £ and precision P defined as

E(yn+l l }i) = (g i !‘)“l:/,‘n(_JiHAIHL(‘_B,I A g/£|/1Z)

(4.3)
ntq-1

P s | L) B
(, n!l_) a,lLl

Where ¥ is an anticipated value of v, 4, Byand C, are as defined in (3.8) and
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Proof:
Consider the MA(q) model defined earlier in equation (2.1). Also, consider
; o —— b o L. .
the approximate LF defined in (3.7) and rewrite it in terms of ¢~ instead ol 1.

el

Moreover, it is possible to define the approximate sum of squares Qi) = > &/ as
=1

follows
Qf,l,'L =y'dy -2y'B+C (4.3)

Where
A = A[ + &H{»: fin'fl » ﬁ = ﬁl + y:n-t &4:4—1 El[ld C’l = C] + )’,1,;4 - (46)

And 4y, B, and C,| are as defined in (3.8).
. : . ; 2 o
From (4.5) and the approximate LF (3.7) after replacing 7 by /67, the joint
distribution of the first future observation y,.; and the time series " =[v, v, ...y, |

given the model parameters o and ¥ can be written as follows

L
p(_V“ £l ,Z!Z’O-) = O‘_[’H-ll exp { —lQFEII-)!}

="+ 1 ’ I i\ !
Py, Yoy o ICXP{—7 3(7_47_2‘/84—6)} (4.7)

Combining the joint g prior of y and o given by (3.9) with the joint
distribution (4.7), we get
pg(_}:,a).p(ym,ﬂz,d) gl ool exp{— Z/2o*3}
where
Z=gly-)A(-n+(ydy-2y'B+0).

Thus, the approximate one step-ahead predictive density is given by
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ply, . |Y)e= J J o lritexp {-— 7o }a’g dy
7 a
(n order to extract a peclect square in y, Z can be rewritten as follows:
=7, ¥,
Where
2 l
Z = (y-M YYM(y-M V)

Which is a perfect square in y and

- - -1
Z,=gydy+C- Viie ¥

)

=L = 2 !
=gy (KX)yy +C vy, -¥M V>
Where

M = g/[l A= (g% l)‘:[l ¥ fﬁ’”‘li{'n” '

And
v o=gd 7+ B=(gdr+ By, X

Substituting in (4.8), the approximate one step-ahead predictive density for

the first future observation has the following form:

Py, 1) e [ortrrleri Jedydo.

a 7

The inner integral is a multivariate normal disteibution. Thus

PV 1 1) € J(f’g”“’”'e"‘””!a’o—

The integrand in the last integral is an inverted camma density of the second

type, which yields
if?l‘l

M

p(y,u )« (Z,)

Note that,
i E < . . S ”
M Vo=y XM X, +t2y X M (8, +gdr)

oz |
+ (B, + g4 y s (B + g4, 7]

Note that (sce Press (1982) p. 23),
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v | i = £*| (U»i) |,l§,ui > rr»i(q*l f_{ |
/ =(g+1) AL [_(&,J[) ,Hl[{l /\”
1 {,l |
- f"l(g%r) a
Where
=1 h
Jl =1+ (g+1) X, .4 £
Then
Zy = o = dif) 4k - d kS
|
Where
5
N .41 -
/{, = Knrl 7(ﬁi 5 g!wf)
d (g +1)
=
A

—1 — 5 T |
ky = g7 A4y +C, - (B, +g4y) (8, +g4,7)
d (g +1) :
Thus, the approximate one step-ahead predictive density can easily be shown
to follow a non-central ¢ distribution with (n+¢-1) degrees ol freedom, location £ and

precision £ defined in (4.3).

4.2. Predictive Densities Based On N-C and Jeffreys’ Prior
Considering a normal-gamma peior on the form (3.11), the approximate one
step-ahead predictive density of the MA(q) model is a non-central ¢ distribution, with

(n+ 2a + g — 1 ) degrees of freedom, location £ and precision £ defined as

E(y.‘ivlli-/_-) = X!H\(l‘{l - V)_l(§,| + fo.[)
(4.9)

. n+2a+qg -1
I e

Where 4y, B, and C, are as defined in (3.8) while « , /3, H and V are the hyper-

parameters of the normal-gamma prior defined eaclier in (3.11) and
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L, =C +208+uVu—-(B, +Vu)y(4 + VYN (B, + V)
| U i ! | | e

d, =1+ X, (4 +V) X wa
On the other hand, consider Jeffreys’ prior on the form (3.12), it can easily be
shown that the approximate one step-ahead predictive density of the MA(q) model is
a non-central ¢ disteibution, with (s - 1) degrees of freedom, location £ and precision
P defined as

E(}’H‘ri lgu) - :’i’ u'rl‘;ll—l B

2]

. n = |
P())nfi I‘S_n) =

Where A, and B, are as defined in (3.8), d; =1+ X, A X, and 0 = Zéf is the
=1

least errors’ sum of squares.

. EFFECTIVENESS STUDIES

The main objective o-t’ this section is to assess and compare the performance
of the above mentioned three approximate one step-ahead predictive densities in
forecasting future observations of MA models. Some MA(1) and MA(2) models are
used for illustration. The investigation is conducted via comprehensive Monte Carlo
simulation studies.

The simulation studies have the following general design: first, a time series
is generated from a given model with specific parameters. Second, the gencrated
data are used to evaluate each of the three predictive densities. Third, efficiency
criteria are calculated for each predictive density. Fourth, 500 replications ol the
above three steps are done. Finally, the output is tabulated.

Generally, the generation process begins by generating 500 data sets of
normal variates, each of size 752, Lo represent the noise £, Then an MA model with

certain coefficients is used recursively to generate 500 realizations, of length 751,
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The first 200 observations are ignored to remove the initialization effect. Thus, we
get 500 time series each of length 351,

Out of the 551 observations, the first 30 observations are reserved {or
estimating the priors' hyper-parameters while the next 500 observations are reserved
for estimating the approximate predictive density parameters, and finally the last
observation, namely, yss, is considered as the first future observation. Estimation of
the priors’ hyper-parameters is performed using a training sample, from the first 50
observations of each data set (see El-Zayat (2007)). From the first 50 observations a
training sample of size either 10 (for short time series) or 10% of the considered time
series length - which is used for estimating the predictive density - whatever is
larger. For instance, if the time series length is 20 the training sample stacts from y,
to y10, while if the time series length is 200 the training sample starts from y; to yio
and so on. From the succeeding 500 observations, a time series ol the desired size is
used for estimating the approximate predictive density. [n this simulation study. the
chosen time series lengths are 20, 25, 30, 100, 200, and 500.

To investigate and compare the performance of the approximate predictive
densities two efticiency criteria are used: the first is the measure P and the second is
the MAD. The measure P~ checks the goodness of interval forecasts drawn from a
specified predictive density. Defining Highest Predictive Density (HPD) region as
the interval having probability 0.95 centered at the mean of the predictive density.
The percentage P~ of time series for which the [PD region of the predictive density

contains the true future observation is defined as

P =(n /500)*100 (5.1)
Where #n” is the number of time series where the HPD region includes the true
future value (see Soliman (1999)). However, P" doesn’t account for the distance of
the future observation from the center of the region or its boundaries. Therefore,
another measure, called percentage MAD, is provided. Percentage MAD stand for
the mean absolute deviations of the future observation from the location parameter

and is defined as

500

MAD = (3 |y, = E;|/500)*100,
j=1

~
()
to
i

I
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Where y,+; and £ are the first future observation and the location parameter,

: - - ¢ .
respectively, of the ;' simulated time series.

3.1. Results of MA(1) Models

(n the current simulation study, three MA(D) models are considered. The
values of the coefficient @ are assumed Lo be 0.2, 0.5, and 0.8. The lirst choice 13
close to the center of the invertibility domain of the MA(1) model. The last choice is
close to the boundary, whereas the second choice is in between. The results of sach

model are summarized in one of the tables (5.1) up to (3.3).

The three tables have the same design. Each row of the table displays the
cesults obtained for a certain time series length. Whereas, the columns of the table
are divided into two parts: the first part is devoted to the values of P for the
considered three approximate one step ahead predictive densities and the second part

is devoted to the corresponding values ol the percentage MAD.

Table (3.1)
The Percentages P and MAD for MA(1) with 9 =02

P MAD
NC Jeffreys' g NC Jeffreys'
- | prior | prior | prior | prior | prior |
. 074 | wr0 | 538 | o96) b DO
- 94.8 942 | 5862 | 5862 | 5868
956 | 956 5581 | 55.68 5583
940 | 946 | 6043 | 6042 1 604l
958 |96 | w60 | 26 | 55T
954 | 962 53.93 53.86 53.87

(n view of table (5.1), one may observe the following: first, the values of
fluctuate around 95% (the theoretical probability of the HPD region) lor the three
approximate one step ahead predictive densities for all considered time scries
lengths. Moreover, the differences in the values of P are negligible. Second, the
values of the percentage MAD are close 0 each other for all considered time series

lengths and the differences in the MAD values are also negligible. These results
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indicate that the considered three approximate one step ahead predictive densities
succeeded to forecast the first future observation of the considered MA(1) model.
Moreover, the performance of the approximate one step ahead predictive densities

based on the considered three priors are equivalent.

~ Table (3.2)
The Percentages £ and MAD for MA(1) with #=0.5

P MAD ]
n g NC Jeffreys' u NC Jeffreys'
| prior | prior | prior _prior prior | prior
20 958 | 970 96.0 5791 57.54 57.96
| 25 942 | 94.6 95.0 60.99 60.76 61.06
30 940 | 954 95.0 57.33 57.15 57.32
100 | 942 | 938 94.6 61.75 61.73 61.75
200 | 952 | 950 95.4 56.12 56.15 56.07
500 | 962 | 962 | 962 55.09 55.05 5499

Table (5.3)
The Percentages P and MAD for MA(L) with =038

P MAD
N g NC Jeffreys' g ~ NC Jeffreys'
prior prior prior prior prior prior
20 952 | 950 | 958 64.22 6328 | 6434
| 25 95.0 | 952 95.2 67.86 67.60 | 67.99
30 93.0 94.2 93.4 6395 | 6364 | 6397
100 93.8 93.6 94.2 66.84 66.87 66.83
200 95.2 94.8 952 | 6428 64.24 64.22
500 | 970 97.0 97.0 | 3973 | 5972 59.74

Regarding tables (5.2) and (5.3), one may obtain similar conclusions as those

obtained from table {(3.1).

5.2. Results of the MA(2) Model
Three MA(2) models are considered. The selected coetticients (6,,4,) are
(0.2, 0.2), (0.1, -0.8), and (0.8, -0.5) which salisfy the invertibility conditions of the

MA(2) model. The results of these model are summarized in tables (5.4) up to (5.6).
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Table (3.4)
lhe Percentages P and MAD for MA(2) with ¢ =02 and ¢, =02

P’ ] MAD

g NC | Jeffreys' g NC Jeffreys'
prior | prior | prior | prior | prior | prior

9360 | 9440 | 9440 | 5857 | 3729 | 5886
9220 | 9260 | 9540 | 6064 | 6038 | 6074
Towa0 | oaso | o480 | 5705 | 5695 | STI4
| 9300 | 9280 | 9320 | 6046 | 6048 | 60.46
95.40 95.60 95.4 10 i 52.29 __&1_ 5249 |

95.80 96.00 | 95.80 54.08 54.02 54.08

Table (5.5)

The PeltentdﬂcsP and MAD for MA(2) with ¢ =0.1 and &, =- 0.8

f ) P’ \ MAD q
noo| g NC l Jeffreys' ol NC Jeffreys'
‘ prior prior | prior | prior __prior | prior
20 | 9400 | 9460 T 9460 | 63.74 6326 | 6406
25 ] 9220 | 9160 | 9260 65.56 6570 | 65.68
30 93.00 T 93.60 | 93.60 66.17 65.86 66.32
100 TL 93.00 | 9260 | 9340 | 6692 6679 | 6693
200 | 9580 5550 95.80 | 5787 |  57.84 5788
| 500 | 9520 h’qs.zo | 9520 6106 | 6103 61.06
Table (3.6)

The Percentages P and MAD for MA(2) with § =08 and €&, =-05

P’ MAD ]
\ NC Jeffreys' g NC Jeffreys'
| prior ~ prior prior __prior prior
94.60 94.60 58.77 58.10 59.10
Toie0 | 9260 | 6059 | 60.63 60.78
9360 93.60 5944 5896 | 39.60
o360 | 9340 | 6266 | 6260 | 6266
T9ss0 | 9580 | 5416 T saaa | a6
TT9s20 | 9520 5585 | 5583 | 5585 |

The conclusions obtained from tables (5.4), (5.5

5)and (5.6) are

similar o

those obtained from table (5.1).
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6. Discussion and Conclusion
The current study introduces three approximate one step ahead predictive
densities, based on three well known priors, to forecast the first future observation of
MA models. The three approximate one step ahead predictive densities are all non-
central ¢ with different parameters. The performance ol the approximate predictive
densities was investigated via comprehensive simulation studies in which a group of

time series following MA(1) and MA(2) models are extensively analyzed.

[n view of the simulation results one may assert the following conclusions
The three approximate one step ahead predictive densities lead to good
interval forccast since they achieve almost the same high values of P” which
is around its theoretical probability of the HPD region, namely 0.95, in all
cases.

2. There is no observable difference in the accuracy of the interval forecasts
between the three approximate one step-ahead predictive densities in the

sense of both 2~ and MAD measures defined above.

(O]

The above conclusions are not affected by changes in the values of the

models' coefficients or the time series length.

Generally speaking the g prior, NC prior, and Jeftreys prior performs almost
equally in forecasting the first future observation of MA models. It may be
recommended to use the Jeffreys’ prior since it overcomes the problem of estimating

the hyper-parameters.
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