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Abstract

This article develops two Bayesian techniques to identify the orders ol vector mixed
auloregressive moving average processes, namely the indirect and direct techniques. “The
proposed indirect technique approximates the joint posterior probability density function of
the coefficients of the largest possible model by a matrix ¢ distribution. Then, by employing
a series of tests of significance, the insignificant coefficients are eliminated, and the model
orders are determined. On the other hand, the proposed direct technique derives an
approximate joint posterior probability mass function of the model orders. Then one may
select the orders with maximum posterior probability. A wide simulation study is
conducted to examine the effectiveness of the proposed précedures and compare their
performance with the well-known AIC technique. The numerical results show that the
proposed techniques can efficiently identify the orders of vector autoregressive moving
average processes for moderate and large time series lengths. Moreover, the indirect

technique dominates the direct and AIC ones.
Key words: Vector ARMA processes — indirect Bayesian identification - direct Bayesian

identification— posterior probability mass function — Matrix normal-Wishart prior— Jeflreys’
prior.

1. Introduction

The class of vector autoregressive moving average models, denoted by
VARMA(p.q) for short, is one of the most successful, parsimonious and practical class of
models which model and forecast vector time series arise in wide variety of applications in

many fields such as economics, business, engineering, meteorology and environmental

' The permanent position of the second and third authors is Department of Statistics, Faculty of Economics
and Political Science, Cairo University.
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studies. See Box and Tiao (1973) Tlao eltal. (1979), Tiao and Box (1981), Liu (7009) dlld
Tsay (2013,2014). In practice, the orders p and g arc usually unknown and should be
identified or estimated. Identifying or determining the orders of VARMA, (p. q) processes
is the first and most important phase of vector time series analysis in which we choose the
most appropriate model from a general class of linear vector time series models. The
identification phase plays an important and difficult part in time series analysis because the
other phases depend on its accuracy. [t is a fact that the solution of the identification
problem depends on subjective opinions as well as mathematical and statistical argurments.
However, one may say that there is no panacea for the identification problem since there is

no optimum method yet fully agreed upon.

Regarding the univariate autoregressive moving average (ARMA) processes, one
may trace three different non-Bayesian approaches to identify the model orders p and g.
Box and Jenkins (1970) developed the first and most favorable one (See Box etal. (2016)).
Their methodology is based on matching the sample autocorrelation and partial
autocorrelation functions with their theoretical counterparts. The second approach is the so-
called automatic or exploratory approach. The foundation of this approach is to fit all
possible ARMA models and compute a certain criterion for each model; then one may
choose that model which optimizes the criterion. The most popular automatic criterion A[C
or Akaike's information criterion was introduced by Akaike (1974). The third non-Bayesian
approach is called a goodness of fit approach. This approach has been proposed by Box and
Pierce (1970) and is based on a Chi-square test to identify the orders of the process. The
Chi-square test has been modified and improved by Ljung and Box (1978). For more recent
references on univariate ARMA modeling see Walter (2014), Brockwell and Davis (2016

and Shumway and Stoffer (2017).

On the other hand, the Bayesian methods of identification of univariate time series
models have been recently developed. However, for well understood reasons, most of the
Bayesian publications focus on pure autoregressive processes. This void in the Bayesian
literature for the mixed processes is due Lo the complexity of the likelihood function of such
processes. Diaz and Farah (1981) have developed a direct Bayesian identification
procedure for pure autoregressive processes. Monahan (1983) has given a numerical
algorithm to handle the identification problem of low order ARMA processes. Broemeling
and Shaarawy (1988) have developed an approximate indirect Bayesian technique to

identify the orders of univariate ARMA processes. Shaarawy and Ali (2003) have
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developed a direct Bayesian technique to identily the orders ol seasonal auloregressive
processes. Moreover, Shaarawy et al. (2007) have developed an approximate direct

Bayesian methodology to identify the order of pure univariate moving average processes.

With respect to the vector version, the identification problem, from non-Bayesian
view point, has been studied by Granger and Newbold (1977), Tiao and Box (1981) and
Tiao and Tsay (1983) by matching the cross correlation functions computed [rom the data
with theoretical counterparts. However, this method is somewhat subjective, difticult and
requires a high standard ol experience in the case of mixed VARMA models. On the other
hand, the Bayesian methods of identification of vector time series have been recently
studied. Shaarawy et al. (2006) have introduced a direct Bayesian technique to identify
order of bivariate autoregressive processes. Shaarawy and Ali (2008) extended the
technique to the case of general pure vector autoregressive processes. More recently,
Shaarawy and Ali (2012) have developed a direct Bayesian methodology to identify the
order of pure vector moving average processes. Most recently, Shaarawy and Ali (2013)
have extended the technique to the case of vector seasonal autoregressive processes.
Soliman (2016) has extended the technique to mixed bivariate ARMA(p,q) Processes.
However, one may say that both the direct and the indirect Bayesian approaches to identify

mixed vector ARMA processes have not been explored yet.

The main objective of this article is to develop two approximate convenient
methodologies to identify the orders of mixed VARMA processes. Using n vectors each of
k observations and a matrix normal-Wishart prior density (or Jeffreys' vague prior), the
indirect approach approximates the joint posterior distribution of the coefficients of the
largest possible model by a matrix ¢ distribution. Then the significance of the coefficients
are tested, marginally or conditionally, by a series of I or » stalistics in a similar fashion to
the backward elimination procedure used in regression analysis. On the other hand, the
direct approach uses the above two mentioned priors to develop the joint posterior
probability mass function of the model orders in an approximate convenient form. Then,
one may inspect the approximate joint posterior probability mass function of the model
orders over its grid and select the orders with maximum posterior probability. In order to
examine the numerical efficiency of the proposed two Bayesian procedures and compare
their performance with the well-known AIC technique, a wide simulation study is

conducted using the modern specialized SCA package.
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The rest of this article is structured as follows: Section 2 introduces the definition of
VARMA (p, q) processes in scalar and matrix notations; and presents the main
assumptions required to develop the proposed identification procedures for these processes.
Section 3 develops the proposed indirect Bayesian technique to identify the orders of
VARMA, (p, q) processes. Section 4 develops the proposed direct Bayesian technique to
identify the orders of VARMA (p, g) processes. Section 5 is devoted to examine the
numerical effectiveness of the proposed two Bayesian procedures in solving the

identification problem of VARMA, (p, q) processes.

2. General Vector Autoregressive Moving Average Processes
Let {r} be a sequence of integers, p € {L2,...},ge L]

2...., p) are kxk unknown matrices of real constants, &; (i=1, 2,..., ¢) are kxk unknown
matrices of real constants, {y(¢)} is a sequence of kx1 real observable random vectors and
{e(n)} is a sequence of kx| independent and normally distributed unobservable random
vectors with zero mean and a kx4 unknown precision matrix. Then the Multivariate (vector)

autoregressive moving average process of orders p and g, denoted by VARMA(p, ¢) for

short, is defined for n vectors as

D,(B)y(0)=0,(B)e@) 2.1)
Where, & (B)=1, -, 8-¢,8' —-~4,8", y()=[y(L1) »12) .. », /c)f ,
©,(8)=1,-0,B-0,B — =0 B and &(¢) :[8(1‘,1) e(52) we Z, /c)]r. I is the identity
matrix of order k and B is the usual backward shift operator. The £xk matrix polynomial
D,(B), of degree p in the backward shift operator B, is known as the autoregressive
operator of order p, while the kxk matrix polynomial ®,(B), of degree ¢ in the backward
shift operator, is known as the moving average operator of order g. The process y(¢) is
stationary if all the roots of the determinantal equation |, (B) | = 0 lie outside the unit
circle, while the process is invertible if all the roots of determinantal equation |®, (B) | =0
lie outside the unite circle.

Consider the special case VARMA;(1,1) with autoresressive and Moving averave
5 5 o

coefficients
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b b b
O=0, = ¢y, ¢ ¢ and ©=0,=|0,
by by O

Then the model (2.1) can be written as

(1, - ®B) y(t) = (1, -©B) (1)

!

0!2 Oi 3
022 QZJ
032 9}3

Where p(t) = [y([,l) y(t,2) y(l,B)} ce() = e £(1,2) 5(1,3)]! and

“ ‘¢| 1B _'¢1zB _(/5! 38—\

[,~-®B=|-¢,B 1-4,B ~¢,B| Similarly, [,-®B=

|
Lﬂé:; |B "¢3zB l'"¢JsB

I_HHB _9123
-6,B 1-6,,B
L"QSIB _HnB

Thus, one may write the observation y(¢) of the VARMA;(1,1) process as
(1) = gyt =L+ gy - L2) + gyt —13)-0,e(-L1)
~0,e(t-1,2)-6,,e(t -13) + (1))

y(£,2) = ¢y Yt = L) + by, y(£ = 1,2) + o (¢ —1,3) ~Byyelt =~ L1)
—8,,6(t—1,2) - 05,8t —1,3) + £(£,2)

Y(.3) = gy (¢ = L) + gy v(t = 1,2) + @5, (¢ — 1.3) —-g,,&(t-L1)
~0,6(t = 1,2)—0,,6(t - 1,3) + £(1,3)

The model (2.2) can be written compactly for n observations as

yO=e®+py-)-0e(t-1),=172,.

Where

e -D=[pe -1 pr-12) y(zul,s)]' and e(-1)=et-1D) &(-12)

autoregressive and moving average coefficients

P D1 ¢l_13_1 b, b 12
CI)l . @1.21 ¢’|,22 ¢1_23 D, = ¢221 (‘35222
h ) ¢1,32 b3 31 3

Then the model (2.1) can be written as

LR

(75113
#23
(151}3

(1, -®,B-®,8%)y ()=, -0,B)e ()

where

and G)\ = QI_}I
_Om
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-6..B
*‘9238
1-6,,B

(2.3)

r

(1 -13)]

Consider another important special case, the VARMA;(2,1) process with

QI.ZE

1.32

o

{ERE—
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1_¢1,118“¢2,u ’ 7(;51.{28_'¢2.128— ’g/’LmB*?éz_lsB
[3 _(DIB_CDEBz - _¢1213—¢2,1182 1‘¢1.2237’ "/ﬁz.zzE?' _¢|,z38‘¢12333
_(/51,5|B—7¢2‘5IBE *Qér_.‘,zB"'(/szsz l_¢|.338‘¢2333
and
rl_QHEB ~0, ., -0, uB‘}
[3 —®[8“‘ _91_218 1"‘"91.228 Rt
L _Omg ‘91.323 l_‘gl_s.sBJ

Thus, the observation y(1) of VARMA;(2,1) model can be written as
e =e(nl)+ ? v =11 +¢) |7.y(l =12} + ¢ 5= 13) + (=20

+ (-2, 2)+ ¢, syt - )=0, et =L1)+ 0, ,8(1-1,2) =0, ;e(t-1,3)
W2y =e(t,2) + ¢, 2V LD+ 65,0 - 1,2) + D y(t = 13) + Pt =2,0)

Py y(E-2,2) + By 25 0(t=2,3) - &80 -1+ O ne(t-1,2) - 0, et -1,3)
y(&,3)=e(t,3) + B, 5, (¢t - LD +¢, ,, vt - L2)+4, ,jy([ =L 2) el Iy(.’ =217

+ ¢, 33)}(f_2’2)+¢2 Bjy(zﬁsz)—Ql_Hg([ +6, 5,60 - )0, 6(0-1,3)
Similarly, the model V

ARMA;(2,1) can be wrilten in a compact form for » observations as

YO =e()+D y(r -1+ D,y(t-2)-O et -1, ¢t=1, 2,0 (2.4)

Where y(¢), (1), y(t-1), £(¢-1) are as defined before, and
W==pe-2)  pe-22)  pe-23)

[n general, one can write the VARMA, (p, q) process as
O =e()+Dy(t-1)+ Oyt =2)++ D BIGE
=@l =0 —-0,5(~2) =@ s(l—q) I'= 120 (2.5)

Conditioning on the first p vectors of observations, the model (2.5) can be written in more

compact expression as
V=XT+U
where ¥is a matrix of order (n-p)*k with ij-th

[,2, ...,k That is

(2.6)

clement equals y(p+i, /), i=1,2. n-p; j =

V= =[P4 ) 32 o ()]
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The matrix X'is of order (n-p)yxkh, h = p + ¢, defined by

/‘(: ‘)({n—p)xkf"i :[Xl /Yg]
Where
Y Y=l .o YO [—f’(ﬂ) ~Ep=l)f . =BG+l
ye+) Y .. YO v | Eerh =€) gD
& . : and ‘%2 . : : :

U |

=
A |
=D YD) - e-p [~ D) - ~eln-q)

Furthermore, [ is the khxk matrix of coeflicients defined by

oo cH

71 D) cY

r: . yl - E and Y. = ’

yz |
l_(Dp# 7@;
Where
¢1.|| 955,12 (éukﬁ QHI 91\3 9.’-”5
S e Bar Bom w: Bun
CDF. _ gbll,ll ¢'|,2.I gjr.._l\ and @f - .,'._l ';‘__ 4.2k ’

!_¢F.r’(i gzﬁf.kE ¢: Kk g{)ff(\. 6;!\.3 fo{k

=1.2,...p; = 1.2, ¢

The class of models (2.5) represents the general class of veclor autoregressive
moving average models of orders p and ¢ and is usually denoted by VARMA, (p, ¢). In
practice the orders p and ¢ are usually unknown and it is necessary to identify them using »
vectors of observations S, = [p(1) v(2) ... y(n)]'. Thus the statistical question is the
following: given n vectors of observations .S, generated from a vector auloregressive
moving average process, what are the most adequate values of p and ¢?. The indirect
Bayesian answer of this question is to find the posterior distribution of the coefficients of
the largest possible model and use a series of tests of significance to eliminate insignificant
coefficients from the model to determine its orders. Whereas, the direct Bayesian answer is
to find the joint posterior mass function of the orders p and ¢. These two processes have not
been done yet because of the complexity of the likelihood function. It is worth noting that
the orders p and ¢ obtained by the indirect technique may be used as initial reasonable

values to employ the direct technique.

o ::I’hc Egy[;)t_l:m Statistical Journal Vol.62, No. 1, 2018
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3. Indirect Bayesian Identification of VARMA ,(p,q)

The VARMA(p,q) class of models is quite useful in modeling vector time series dala

and frequently p <2 and g < 2. In practice the values of the orders p and g are unknown

and
should be identified. The indirect Bayesian approach proposed Lo focus on the posterior
distribution of the coefficients
[ r ek
v,
€3]
C=lg, 46 - 9, 0 6, .. 8, = G.1)
K<k
P2 @ _
Where ¢; is a square matrix of order k,i=1,2,....P, while Q, Is a square matrix of order £,

'=1,2,... 0. The maximum orders 2 and O are assumed to be known. The conditional
/ Y u

likelihood function of the parameters @, ® and 7'is

(cD

2 xp(—ilr Ze([)g ()} (

t=P+|

(W]
[~J

kPxk kOxk .
where @ € R™™ O e R™ 750 and

W)=y ()-X'(-DC |, (=12, .n (3.3)

Where

X@-D=lye-) ye-2 .. ye-p -£e-1) -£((-2) .. —£(t-Q)

The expression (3.3) is a recurrence relation for the residuals and the m-th component of the

residual €(¢) can be written as

Pk Q0 k
g(t,m)=y(t,m)= "> "¢ y(t—i,))+ > >00,,.&t=i,))

=l j=l i=l j=I1

=12, .., m=172

ek (3.4)
The recurrence relation (3.4) causes the main problem in developing the exact

analysis of VARMA(p,q) processes. [However, this recurrence may be used to evaluate the

residuals recursively if &, 0; and the initial values of the residuals are known. The
proposed Bayesian approximation is based on replacing the exact residuals by their least
squares estimates and assuming that the initial residuals equal their means, namely zero.
Thus, we estimate the residuals recursively by

The E gyptian Statistical Jour nal Vol. 62 No. L 2(}18
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=l j=1 =l j=I
(=12, .. .00=12, 0k (3.5)

A
Where §/5,-_,,,j- and @iy are the nonlinear least squares estimates of parameters b,y and

@, ;. Using the estimates of the residuals, it is possible to write the conditional likelihood
imy- P
function approximately as

n-P ,

L*(cp@jlsn)mW? exp(—10r ijm DX - DA - X -] 7)) (3.6)

=P+l
Where X({ —1) is the same as X(¢ - 1) but using the estimated residuals instead of the exact
ones. A convenient choice of the joint prior density of the parameters [ "and 7'is the

following matrix normal-Wishart distribution

£, 1)=& (07 )(7) G.7)

Where
k(P+O)

E(OT)ec|T| 2 ex{—%fr[ro]'w[r-—ohj and

k(P+Q)x

The hyper-parameters D € Y , Wis a k(P+Q)xk(P+Q) positive definite matrix, a is a

positive scalar and ‘W is a kxk positive definite matrix. [f there is little information aboul the

parameters, a priori, it is possible to use Jeffreys' vague prior

—kaU

EC, Ty |T| 2, Te RH™ 159 (3.8)

Theorem 3.1
[f the approximate conditional likelihood function (3.6) is combined with the joint prior
density (3.7), the marginal posterior distribution of ['is a matrix ¢ with parameters:

(A'B, 47", C-BA'B, ) where

=W+ i)%(z—l)f('(z—l),

=P+l

B=WD + i){’(f—l)y’(z),

t=r+|

C=D'WD+Y¥+ Zy(f)y (t) and
The Foyl)[mn StdllSthdl Journal Vol.62, No. 1, 2018
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v=n-P+a-k+]l

Corollary 3.1

[fthe approximate conditional likelihood function (3.0) is combined with the Jeffreys'
vague prior (3.8), the marginal posterior distribution of /is a matrix £ with parameters:
(4B, A'I, C-B'A"'B, v). However, the quantities 4, B, C and v will be modified by letting

W0 (K(P+O)<k(P+Q)), a— -k(P+Q) and ¥—0 (kxk).

Since / "has a matrix ¢ distribution, one can test any subset of rows to be zero,
marginally or conditionally, using £ statistic if k=2 and y” statistic if £ >3. The forms of /-

oo 5 . —_ T
and Y~ statistics can be found in Box and Tiao (1973). Theorem 3.1 and corollary 3.1 give

the machinery necessary to do an indirect procedure to identify the orders p and g of the

general vector mixed ARMAk(p,q) processes as follows:

(1) Test Hy: QQ:O versus Hy: 6, # 0 using the marginal posterior distribution of QQ,
which is a matrix ¢.

(2) If Hy is not rejected test Hy: 9(_)_‘, =0 versus Hy: 0@4 #0 using the conditional
distribution of F)Q_| given QQ: 0, which is also a matrix t.

(3) If the above Hy is not rejected, test Hy: 0,, =0 versus Hy: &, #0using the

conditional distribution of Og . given Oo= QQJ: 0, which is also a matrix ¢, etc.
(4) On the other hand, if H, of (1) is rejected, test Hy: ¢, =0 versus H;: #, =0 with the
marginal distribution of ¢p, which is also a matrix ¢,

(5) And so on.

Continuing in this fashion, one will arrive al a stage where he rejects the hypotheses

¢, =0 and 0, =0 . One concludes that the data was generaled by a VARMA ¢(po,q0)

process, where 0 < pg < P and 0 < go< .

4. Direct Bayesian Identification of VARMA(p,q)

Given the initial values pgand g, the main objective of this section is Lo develop an
approximate joint posterior probability mass function for the orders p and ¢ of the
VARMA(p,q) process. In order (o achieve our main objective, let S, = [y(1) »(2) ... yn)]

be a matrix of nxk observations from VARMA(p.q) process of the form (2.8) where the

__ The Bgyptian Statistical Journal Vol.62, No. 1, 2018
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orders p and g are unknown positive integers. Conditi oning on tlu, first p observed veclors,

the likelihood function of the parameters ['(p.q), p, ¢ and 7'is

Ck(n-p) n-p
L(C(p.a) pa 118, ) 2m) 2 [T] exp[zf ZF({){, (:)T] (4.1)

t=p+l

Where ['(p,q) € R T>0;p=1,2,...,P;¢=12,...,0; where P’ and Q are the largest
nossible orders of the process and A=P+Q. [n general the conditional likelihood function
(4.1) is very complicated because the disturbances &(f) are non-linear functions of the
coelficients §; and 9, However, one may wrile the disturbances' vectors, from (2.8), as

5] = p () = Kol =D UCHGY » =12,....n (4.2)
Where

X -D=le-D ye-2) oy =p) mE =) —eU=2) - )]
The recurrence formula (4.2) causes the main problem in developing the exact

Bayesian solution for the identification problem of VARMAk(p,q) processes. The proposed

Bayesian approximation is based on replacing the exact residuals () by their least squares
estimates, say £(¢), which are obtained by searching over the parameter space [or the
values of @ and O, say ¢ and ® . which minimize the residual sum ol squares Z £ (t.0),
i=1.2,....k Before doing this process, one should have initial values for the orders p and g.
[t is proposed to obtain such values, say py and say go, by the indirect Bayesian technique
presented in the previous section. The least squares estimates of @ and ® and the assumed

initial values of the residuals, namely zero, are then substituted in (4.2) to obtain the least

squares estimates of the residuals recursively. Substituting these estimates in X’p‘q(f- 1), one
can write (4.2) as

£ =y () - X, (=Dl(p.q), 12,0 (4.3)
Where X;}D‘% (t-1) is the same as X', 4(/-1) but using the residual estimates instead of the
exact ones. Using the estimates of the residuals, one may rewrite the conditional likelihood

function (4.1) approximately as

k(n—p) n-p

[f(Y(,r),qf),(U,C],TLS‘”)OC('Z;'T)__2 LiEs c\p(f—

(44)

r=p+l

{i[)‘(")“’l 2K, ., “‘)HJ'U) U'(p.g) X, ,, (= l)]lf'})

An adequate choice of the conditional prior of I'(p,g) given p, g and T'is

The Eg'yptiun Statisi.ti(_:ﬂlk.iog‘tfnal Vol.62, N(ﬁ, .2_01_8
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/ (F(p,q)lp,cz,? )ec (27) | GXP(—E

(4.5)
ff‘{[r(p,q) =D(p. )| R(p, )T (p,q) - D(/w)]T})
Where the hyperparameters D(p,q) € R and R(p.q) is an hk=hk positive definite

matrix. The precision matrix is assigned, a priori, the Wishart distribution

a-itely (
f} (Y)OC I T ;‘—5-_—‘ exp| - im[rk{JT)

Where YV is a kxk positive definite matrix. Thus, the joint prior distribution of the
parameters I(p,q) and T given p and g 1s assumed to be
JA(NORD) Tlp.a)< f,(U(p, O\p.q.7)f, () (4.6)
The class of prior distributions (4.6) is called a matrix normal-Wishart class of
distributions. Let /3;; be the prior probability mass function of the orders pand g, ie,
B, =P p=iq=j]; =12, ; j=12...0 (4.7)
From (4.6) and (4.7), the joint prior distribution of the parameters [ (p,q), p, ¢ and T is

)
7)'1:'( N

S p,q.T)oe B,270) 2 |R(p.

h&+u

(4.8)
EXP(* T {[F(Psfl) D(P:Cj’)] R(Puf])[r(/)af{)* D(p.q)|+ wl 1"}
[fone can't or unwilling to specify the hyperparameters D(p,q), R(p,q), a, ‘¥ and B, one
might use Jeffreys' vague prior
o S
S(C(p.q), p.q.T) e |T| > (4.9)
Combining the approximate conditional likelihood function (4.4), via Bayes theorem.
with the prior distribution of the parameters (4.8), one may write the joint posterior
distribution of the parameters U(p.q), p, g and T as

—x(u {U hx ﬂ(ﬂ U}

e0p.q). p.a.71S, Joc B, (27) R(p. fn{"f B
exp(~Ler{ [T (p.q) - D(p,cn] Rp. ) D(p.q) - D(p. )]+ ¥+ (4.10)

n '

> bo-reai,, e olo-ceak, o n )

t=p+|
Where

a(p,q)=n-P+kh+a-k-1 (4.11)
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Theorem (4.1)

Using the approximate likelihood function (4.4) and the prior distribution (4.8), the

joint posterior probability mass function of the orders p and ¢ is

h(p.qlS”)tr; B, (?/‘1’)[_,’ lR(p,q)l% ‘ D q){ = ;r [(” [)Jrf;f__f k)
n> f’—él+k71

Where

Alp.q)=R(p.q)+ Y &, ¢ -DX, (-1

t=p+l
B(p.q)= R(p.a)D(p.q)+ 3. X, -1y (=1 and
t=p+l
C(p.q)=D(p.q)R(p.q)D(p.q)+ ¥ + 2 S )y () - B (p.a)a™ (p.a)B(p.q)
t=P+|

Proof

Consider the terms between { } in the exponent of (4.10). They can be wrilten as

LLET 1
'(p, fl{ R(p.q)+ }_‘f(,.,‘f,(t DA, (¢ —1)}“([)&1)~T'(p»q{R(M)D(p,q)+ X, 4)}"(0\

t=p+l t=prl

i=p+l

—[D( Ripog)t v X, —l)} C(p.q)+ D'(p.q)R(p.q)Dp.q)+ ¥ + 330 V()

t=p+l

=[r(p.q)- 4~ (p.0)B'(p. )] Alp,g)T"(pra) - 4™ (p.q)8'(p,q)) + Cp.q)
(4.12)

Substitute from (4.12) into (4.10), one may have

n— J) -k Cf([”)

) L\(p(——!r(/(ﬁf])[) (4 11)

g(CCp.q).p. 0,118, )= ﬁﬁﬂ) B
expl-Ler[r(p) - 4" (p.q)B(p,cn] zf(p.q)[w.q) _ A (B )T)
Integrating (4.13) with respect to ['(p,q), one may have the joint posterior distribution
ofp,gand T as

hi*

cxp(——n (,(pq)T) {( 7)1

. x
_.J

Q(H p) ____f{)

glp.a.118,)= B,027) WR(p 1#\ A(p.q)|

o
J
(4.14)

However, (4.14) can be written as

g (p.g.1is, ) o 8,02 o)

(I(.[i q) Un #.

exp(-L0rClpg) 7) (4.15)
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Integrating (4.15) with respect to 7, one may have the joint posterior mass function o fpand

g as

Hp,

b kel "[‘,’{.""f"ff k- l] /)( o ) il
R e S ()

(4.16)
Where b(p,q) = a(p,q)-kh+2 and [',(s) is the generalized gamma function, see Box and Tiao
(1973), defined by
r(r-1)

r 6= [r®)]5 ,,:.;,r brs): oyrot

Thus (4.16) can be written as

2 et B (pep g -1

Hp.dis, )= 8,05)% 4 p.g) 2|rep, R

= - J

blpg) >0
Finally
Fl pr: x P+ + J"f\
Hp.qs, ) @n prw\ ﬁrtz jf?,, n> P-a+k-l

= /

This completes the proof.

Corollary (4.1)

Using the approximate likelihood function (4.4) and vague prior distribution (4.9), the

joint posterior probability mass function of the orders p and ¢ is

i) Aoy khe j 4
hlods, ) 8,07) 2 |4 (pa)2 lC (pa) (” ﬁ?i”ﬁ—‘} n> Prihth|
Where
A (p.q)= Z:fﬂﬁffuf;ﬂ!~0,
r=p+1
B*(p,q)= Z/\A’p'q([—l)y’(t) and
t=p+l
Cpg)= Yoy O -8 (g A ()8 (p.g)
f=p+l
Proof

The proof of corollary (4.1) is similar to that of Theorem (4.1) by letting D(p,g)=0
(hk»k), R(p,q) = 0 (hkxhk), Y=0 (kxk) and o= — kh — |k +2.

5. An Effectiveness Study
The main objective of this section is to study the effectiveness of the two proposed
Bayesian techniques in solving the identification problem of multivariate (vector) mixed

autoregressive moving average processes. In order to achieve this obiectivc, six simulation
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studies have been conducted. The proposed direct and indirect Bayesian techniques are
employed to identify the orders of VARMA,(1,1) and VARMA(2, 1) processes with
various parameters' values. The direct technique is employed with three different priors. All
computations were performed ona PC using the most modern package SCA.

Our main concern is to study the numerical efficiency of the proposed indirect and
direct Bayesian techniques by calculating the percentages of correct identification. Such
efficiency will be examined with respect to the time series length (n) as well as the
parameters of the selected model. For all values of the time series length (n) and the

parameters, the variance-covariance matrix of the noise term 1s fixed at

o

Simulation L, as an illustration, begins with the generation of 500 data sets of
bivariate normal variates, each of size 500, to represent £(1,1) and &(¢,2) respectively. These
data sets are then used to generate pairs of 500 realizations y(1,1) and y(¢,2), each of size
500, from VARMA;(1,1) process with coefficients

0.1 0.1 , 0.2 0.2]
O = and O = l
0.1 0.1 02 02

By substituting in the equations
W) = (= LD) + gyt -12) - 6,6t ~ L) — 0,6 = 1,2) + et.1)
)’{Iaz) = ¢’2 |}’{": - Ll) i gﬁzz)/(( - l,?,) - ‘9215(I - Ll) - 9235(1‘ - 1’2) + 5({12)

assuming that the starting values are zeros, £(0,1) = £(0,2) = y(0,1) = p(0.2) = 0.

The first 200 pairs of observations y(f,1) and y(¢,2) are ignored to remove the effect of
the initial conditions. Thus each generated realization will be of size 300. For a specific
prior, the second step is to carry out all computations, assuming the maximum orders =2
and O=2, required to identify each of the 500 realizations and finding the percentages of
correct identification for the proposed indirect and direct Bayesian methodologies. [t might

be important to mention that the indirect Bayesian technique is used as an intermediate step

in the computations of the direct technique, in order to have adequate initial values p, and

g, . Such computations are done for a specific time series length n using the first »

observations of each generated data set. This second step is repeated for cach chosen time

series length and prior combinations. The time series length n is taken to be 30, 50, 100,

~ The Egyptian Stzxtisiiczilﬁgg_ljl{zll V_ol.GZ, No. 1, 20187;__ -
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150, 200 and 300. With tespect to the prior probability mass function of the orders p and ¢,

which is combined with the non-informative prior (4.9), the following priors are used:

Prior 1:

IR i=1,2,...,P% j=1.2,...0
Prior 2:

B, = (0 5) =1 dvwls =12, 0
Prior 3:

The first prior assigns equal probabilities to all possible values of the orders p and q.
The second prior is chosen in such a way to give probabilities that decline exponentially
with the orders p and g, while the third prior is chosen in such a way Lo give probabilities
that decrease with an absolute amount 0.1 as the orders increase. Simulation I{ is done in
similar way but using

[70.2 —0.2 =02 =02]
D= and ® =
|-02 -0.2] -0.2 -0.2

Simulation [II is done in a similar way but using different values of the parameters @
and ©. Where,

Tl 03 0.4 0.4
Lo.z 0.6} an {0.4 0.4}

=

The results of simulations I, [T and 1T are reported in table 1. For each of these
simulations, the percentages of correct identification using the indirect Bayesian technigue,
with non-informative prior (3.8), are also reported. Furthermore, the percentages of correct

identification using the well-known AIC are reported as well.

— The Egyptian Statistical Journal Vol.62, No. 1, 2018
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for Simulations 1, IL L

e

Table (1): Percentages of Correct Identification of the Bayesian Techniques and AIC

| DIRECT | DIRECT | DIRECT
PARAMETERS | n | INDIRECT | oot | DUt e | B
30 92.6 12 (.4 1.2 47.6
| oe=[20 20 | s 78.0 38 5.8 1.8 40.2
100 70.6 9.6 14.0 1.4 39.8
Lo, =[02 07 ) 150 72.8 19.0 24.0 20.6 39.6
o 200 77.0 25.4 33.2 28.8 45.0
! 300 78.8 29.4 38.0 32.8 50.4
30 90.2 0.6 L0 0.6 47.8
@ = 02 00| 0 77.4 3.8 5.8 5.0 46.8
100 714 13.8 8.4 16.2 45.2
o=[02 02| 130 73.0 22.8 28.4 25.4 42.4
0T 200 74.6 33.0 38.8 36.0 48.0
300 76.2 39.0 46.2 42.0 52.4
30 93.0 3.6 6.8 5.4 512
o =[5 S 1 s0 67.2 8.6 (1.4 10.0 48.4
100 61.0 18.2 2.8 20.0 50.2
| @1_[8-1 gi] 150 62.6 22.8 29.6 25.8 514
| Al 200 63.6 24.8 312 27.2 56.6
} 300 67.0 28.6 33.2 30.6 56.2

Source. Simulated Data

[nspection of the results, given in the above table, shows an increasing tre

nd for

efficiency of the proposed Bayesian methodologies as the series length » increases. n

addition, the percentages of correct identification achieved using the indirect Bayesian

methodology are higher than those obtained by both the direct technique and the AIC.

Moreover, the percentages of correct identification achieved using the third prior in the

direct technique are higher than the corresponding percentages achieved using t

he first

prior, while the corresponding percentages achieved using the second prior are the highest

among the three priors.

Another set of simulation studies were employed in a similar fashion but using

VARMA,(2,1) processes and the results are reported in table 2.The reader can notice that

these results are similar to those given above in table 1.

[n simulation IV the coeflicients are

02 -0.3 -0.1 0.4 05 —0.4
it [—0.3 0.4] ¢ {—0.3 0.5] 91 [-0.4 0.3
[n simulation V the coefficients are
105 -04 104 0.2 ~ _[02 =03
®1={04 o3l ¥ [0.5 0.5 1= [_0.3 0.4 ]

In simulation VI the coefficients are

~The Egyptian St:ggtistiggll .lou;l_j-r;{al V(}LGZ, Nq. I, 20@ _
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(.5

0=y

“O_/,;.

0.4
0.5

0.2 -
{5

1

for Simulation 1V, V, VI

[*0.1

0.4
—-03 05

J

B :__E_auirWQSJI%E@}ZJE!H@:_IM@O@?:"HESE@-f_\'__i' .
(1)2 = [

Table (2): Percentages of Correct Identification of the B

ayesian Techniques and AIC

o o , DIRECT | DIRECT | DIRECT | —
PARAMETERS N | INDIRECT ALC
PRIOR| PRIOR2 PRIOR3 |
o L[02 03] 30 9.8 25.6 25.4 25.6 39.0
: . T 50 30.0 21.0 23.8 22.4 3.8
By= | s ofsl 100 58.8 21.8 26.4 24.6 33.4 |
150 64.6 22.8 26.6 25.8 3T.yq |
o ={o.s. -0.4 _ :
'Tloe o3 200 71.4 23.0 29.4 28.4 39.4
300 756 25.8 30.0 29.0 U
bl 30 22.2 24.4 25.4 25.2 48.0 |
o, =] 05 i I
| e B 50 52.8 20.8 2.4 25.6 5.0 |
Bp=loe ael 100 74.8 28.0 34.0 332 39.6 |
02 04 (50 74.4 324 35.0 34.8 6l.4 |
0,=%2 o |
Yo l-os 0 200 73.8 37.4 38.2 38.0 62.0 |
300 70.2 36.8 37.8 37.6 55.2
N 30 10.4 27.4 27.8 27.8 43.0
¢ = o ] F) I _
! 0.4 D 50 32.0 26.8 30.8 30.2 40.2
| ®7los o5 100 63.2 32.6 38.4 37.8 48.6
o [01 04 150 75.8 33.4 36.4 35.8 59.0
‘7103 05 200 75.0 34.2 35.2 35.0 57.4
: 300 70.4 34.8 35.2 35.2 62.0
Source: Simulated Data

Taking the above comments into consideration, one may say that the numerical
results support the adequacy of using the proposed indirect Bayesian procedure in
identifying the orders of vector mixed ARMA processes when a moderate or a large time

series length is used.

Conclusion

The current study has developed two Bayesian techniques to identify the orders of
vector mixed autoregressive moving average VARMA(p,q) processes, namely the indirect
and direct Bayesian identification techniques. The proposed indirect technique
approximates the joint posterior probability density function of the coefficients of the
largest possible model by a matrix ¢ distribution, Then, by employing a series of tests of
significance, the insignificant coefficients are climinated, and the model orders are
determined. On the other hand, by employing an approximate conditional likelihood
function and a matrix Normal -Wishart, or Jeffreys' vague prior, the proposed direct
identification technique is based on deriving an approximate joint posterior probability
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mass function of Llu, ‘model orders in a convenient form. T Iimi_]_one may edsxly calcula[c the
posterior probabilities for all possible values of the model orders and select the orders with
maximum probability. A wide simulation study is conducted to examine the numerical
efficiency of the proposed two Bayesian identification procedures and compare their
performance with the well-known AIC technique. The numerical results show that the
proposed lechniques can efficiently identify the orders of vector autoregressive moving
average processes for moderate and large time series lengths. Moreover, the indirect

technique dominates the direct and AIC ones.
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