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ABSTRACT

A new type of generalized matrix variate gamma distribution is defined. The
proposed distribution is the matrix variate analog of Agarwal and Kalla (1996) scalar
generalized gamma distribution. Some of the well known matrix variate distributions
are shown to be its particular cases. The main statistical properties of the proposed
generalized matrix variate gamma distribution are work out. Finally, some probability
distributions connected with the generalized matrix variate gamma distribution are
introduced.

§ 1. INTRODUCTION

In recent years many generalizations of gamma and Weibull
distributions are proposed notably by Bradeley (1988). Srivastava
(1989), Lee and Gross (1991), and Bondesson (1992). These generalized
distributions are mainly introduced in order to extend the scope of
applications of ordinary gamma and Weibull distributions.

Kobayashi (1991) has introduced a new type of generalized gamma
function as

I“(m,n,lr):J'e_x x™ x+n)" dx ...(1-1)
0
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for a positive integer r. Here m and n are parameters of the function.
This function occurs in many problems of differaction theory [Kobayashi
(1991)].

In order to define a new type of generalization of the gamma
distribution Agarwal and Kalla (1996) considered a slightly modified
form of the generalized gamma function as

(= o]
J e ™ X" (x+n) " dx a,m,n >0
0

= o™ T'(m,an,\) ...(1-2)

Moreover, a random variable X follows a new type of generalized
gamma distribution with four parameters if its probability density
function (p.d.f) is given [Agarwal and Kalla (1996)] by:

f(xsm:naas A4)

m-Xx
:;_(—ime_axxm_l(x+n)_;‘ x>0 ...(1-3)

where m is the shape parameter, o is the scale parameter, n is the
displacement paraemter, and A is the parameter of intensity of the effect
of the corresponding displacement parameter.

In this paper, we define a new generalized matrix variate gamma
density. The proposed distribution is the matrix variate analog of
Agarwal and Kalla (1996) scalar generalized gamma distribution defined
in (1-3) above.

In section (2), the basic notations, definitions, and theorems of
functions of matrix arguments that are needed in the rest of the paper will
be presented. In section (3), we have defined a new type of generalized
matrix variate gamma distribution. In section (4), the main statistical
properties of the proposed generalized matrix variate gamma distribution
are work out. Finally, some probability distributions connected with the
generalized matrix variate gamma distribution are introduced in section

(5).
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as

§ 2. FUNCTIONS OF MATRIX ARGUMENTS:
SOME BASIC PRELIMINARY RESULTS

First we will start with the discussion of scalar function of matrix
arguments. All the matrices appearing in this paper are assumed to be
symmetric positive definite and having only real (not complex) elements
unless otherwise specified.

Let A = [a;] be a pxp real symmetric matrix. Due to symmetry all
p = p(p+1)

the p* elements are not distinct only a maximum of 142+...+ -

elements are distinct.

(2-1) Notations
A >0 : the matrix A = [a,] is positive definite
A >0 : the matrix A is positive semi-definite
A <0 : the matrix A is negative definite
A <0 : the matrix A is negative semi-definite
0 <A <B : the matrices A,B, B-A are positive definite
|A] =det A : determinant of A
rA=tr(A)=traceof A=a;; +ap+...+ay,

When dealing with functions of matrices it is often necessary to
transform a pxp matrix X to the pxp matrix Y = F(X) when F may or may
not be linear.

The transformation Y = F(X), X = X', Y = Y’, will be treated as a
transformation of the p(p+1)/2 functionally independent scalar variables
in X to p(p+1)/2 funcationally indepedent scalar variables in Y. If X and
Y are not symmetric then it is a transformation of p* variable to P?
variables.

If a pxp symmetric matrix X is transformed to Y then the Jacobian
of the transformation is defined as

X
oY

JX—->Y)=

+

where (+) indicates the absolute value of the determinant, and % isa
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square matrix of order p(p+1)/2 (when X and Y are symmetric) and its i-
th row j-th column element here is the partial derivative of the i-th row
element in X with respect to j-th column element in Y.

The Jacobians of certain transformations which are needed in the
subsequent sections are given in Deemer and Olkin (1951), Olkin (1953),
Rogers (1980), and Magnns and Neudecker (1988).

(2-2) Integration

Some useful integrals which are needed in the following sections
are now given.

Definition (1): The matrix variate gamma function
The matrix variate gamma function, denoted by I',(ar), is defined as

Ta)= | e A A HED gA
A >0
Re(a) > Ya(p-1) ...(2-1)

Where the integral is over the space of pxp symmetric positive definite
matrices.

The matrix variate gamma function I'j(a) can be expressed as
product of ordinary scalar gamma functions given in the following

Lemma.

Lemma (1)
Ior Re(a) > Ya(p-1),

Ty(a) = n*®V T(a) [(a-4%) [(o-1) ...T(a- R;-“—l)

p
= e [T oy (i-1)] .22

Proof: See Muirhead [(1982) p. 61]
A particular Laplace transform which is quite useful is

e -t (ZA) IAla -4 A
A >0

=|Z|*Tp(a) ...(2-3)
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.

Herz (1955) proved that the above integral is absolutely convergent for
Re(z) > 0, and Re(a) > Y2(p-1). Hence, for Re(z) > 0, substituting B = Z.*
AZ” with the Jacobian J(A—B) = |Z[“®*) in the above integral we get

j e -r (ZA) |A|a -t A
A >0 :
= | Z I‘a J' e —tr (B) IBIU- Ya(ptl) dB
B >0
=|Z " T'y(a)
This proves (2-3).

Definition (2): The matrix variate type-1 beta function
The matrix variate type-1 beta function, denoted by By(a,b), is

defined by

Bo(a,b) = I JA[E-5PD LA P40 A

0<A <I
p

Re(a) > Y4(p-1), Re(b) > ¥(p-1) ..(2-4)

Substituting A = (I,+B)" in (2-4) with Jacobian J(A—B) [I+B[""
we get the following:

Definition (3): The matrix variate type-2 beta function

For Re(a) > %(p-1) and Re(b) > %(p-1)

Boab) = [ [BP D +B| dB ...(2-5)

B >0

The matrix variate beta function B,(a,b) can be expressed in terms
of matrix variate gamma functions.

Lemma (2):
For Re(a) > %(p-1) and Re(b) > Y2(p-1),

_ L@@
T, (b,a)
= Pp(bs2) ...(2-6)

Bp(a,b)
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(2-3) Hypergeometric Functions of Matrix Arguments
Distributional results of random matrices are often derived in terms
of hypergeometric functions of matrix arguments. Some useful results

which are needed in the sequel are now given.

Using the Laplace and inverse Laplace transforms for the matrix
variate case Herz (1955) defined a hypergeometric function of a matrix
argument by using the following pair of equations:

ﬁlFS(als‘ + o587, C5 bb' . -sbs;_Z_l) ,Z]-c

- 1 J' € —tr (ZA) rFs(al, veeydr, bi:' .. Sbs;'A) IAICJA(erl) dA

Tl asa
...(2-7)
and
Fer(@y,...58 bisesssbaei- A) ]A{C-%(pﬂ
ptp-1)
= M_ZT)_:__ e LD E(ay,...,a by,....bo-z") |Z[°dZ
(2= i)ip{pﬂ) Re(z)=X >0

...(2-8)

Note that equations (2-7) and (2-8) do not give the hypergeometric
functions explicitly except for special cases. But these equations enable
us to study the properties. The conditions to be satisfied are that Re(Z) >
0, A > 0, Re(c) > %(p-1), s 2 rorr = s+l and |Z]| <1 where | Z]
denotes a norm of Z. The parameters by,...,b, are such that none of b;-
Yy(k-1), j = 1,...,s, k = 1,...,p is a negative integer or zero. If any of the
bY(k-1), j=1,....,s, k=1,..,pis a negative integer or zero then there

should be an aj, j=1,...,r such that (a;- kT*l)m = ( first before any (b,

5-;1),“ = 0 for j=1,...,1, k=1,...,p, £ = 1,...,s and for exmple (2), =
a(atl)....(atm-1),(a)p=1,a#0.

By using (2-7) and (2-8) one can extend most of the integrals
involving hypergeometric functions in the scalar case to the
corresponding matrix case. Some of these results which are useful in our
derivations are now given.

(i)  oFo(Z)=e"? ...(2-9)
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(i)
(iii)

(iv)

(v)

(vi)

(vii)

Foc; s2)= [,-Z¢  ||z] <1 ...(2-10)

Let R(pxp) be a symmetric matrix, then

ISIE'VZ(F*']) ]Ip_SIb'Vz(p+l) an(al yoee ,3m;b1) wia :bn,RS)dS
0< S< Ip
_Len®

g F (a - y@maa, bl,...,bma+b;R) (2-1 1)
m+14 n+1 2], )
I',(a+b)

For Re(a) > %(p-1), Re(B) > %(p-1) and Re(B-a) > "2(p-1) and
symmetric R(pxp)
1Fi(a;B;R)

I', () [S[FHEH [ S ErD IRS) g ...(2-12)

I (@),(B-a)gcs%r
p

For Re(a) > Y(p-1), Re(y-a) > Y2(p-1) and symmetric R(pxp)

I 01
Fi(o;B;7;R) = -
2 l( B 'Y ) rp(a)r'p(y__a)
S| E+D in_SIVﬂ-’/z(pﬂ) IL-S|- P ds ...(2-13)
0< S<1
p

For Re(y) > Y2(p-1) and Re(y-a-B) > Y2(p-1)

WL, G -a-p - (2-14)
L, (-0, (r~B)

Fi(osBsy:Ip) =

The hypergeometric functions with matrix arguments |F; and ,F, as
given -in (2-33) and (2-34) respectively, satisfy the following
relations [Herz, 1955].
Fi(a;y;8) = " \Fy(y - o;73-S) ...(2-15)
s
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2F1(03B:7;8) = [1-S| ** SFi(y - oB513-S(X,-8) ™) ...(2-16)
=[-8 " Fi(y - sy -Bsv:S) (2-17)

(viii) There is yet another type of confluent hypergeometric function, ‘¥,
of matrix argument defined as [Muirhead, 1970]

Y(a;c;R)

-1 je"—’(‘*s) [SPAPHD LS4 gg
I',(@) g5

= L. e WS |SPUPD Ry g8 L (2-18)
r,(a)R| 2% s>0

where R(pxp) is a symmetric matrix, Re(R) > 0, and Re(a) > Y2(p-1).
Moreover, Subrahmaniam (1973) proved the following results

(IX) For Re(y) > Y%(p-1) and Re(8 +a-y) > Y2(p-1)

[ A7 ALY oF (o Bry-Al dA

A>0

_ L, (@+8-PI,(B+6-7) ...(2-19)
(O, (x+B+0-7)

(X) For Re(w) > Y(p-1) and Re(b) > Ya(p-1), and 0 < B <1

A LAY SF (o, By;-AB| dA

0<A<I
P

= Bp(a,b) sFa(a,a.Bsath,y;B) ...(2-20)

(XI) For B(pxp) symmetric positive definite matrix, Re(-BC) <1,
and Re(a) > Y2(p-1),
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|APPY L ACAI™? dA
0<A <B

= Bu(a,%a(p+1)) B[ 2Fy(a,atbsa+Va(p+1);-BC) ..(2221)

(XII) For B(pxp) symmetric positive definite matrix, Re(-(BC)™") < I
and Re(b) > Y(p-1),

[ AP [I+CA| ™ dA
A>B

= By(b,%2(p+1)) B[ [C[™*
JFi(a,a+b;b+¥(p+1);-(BC)™H Lol 2422Y

(XIII) For Re(I,-B™") < I,,, Re(b+c-a) > Y4(p-1),and Re(a) > ¥4(p-1)

[ IAPED L+A|® I +BA|* dA
A>0
= B,(a,b+c-a) B[ ,F;(b+c-a,c;b+c;I-B™) ...(2-23)

X1v) [ ey R (a,a-c+a(pt1);b;-Y) dY
Y>0

=y(b) X[ ¥(ajce;x) ...(2-24)

(XV) For Re(X) > 0, Re(b-c) > -1, and Re(a) > Y4(p-1)

Y>0

Fp(b)l“p (b-c +-—]- (p+1))
= 2 2F1(b,b-c+Y5(p+1);at+b-c+(p+1);L,-X)

I“p(a+b-c+-,-1)~(p+1))
...(2-25)
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(XVI)For Re(AX™") <1,

I e XV |y [P Fi(a;c;AY) dY
Y>0

=Tyb) X[° Fi(abic;AX™) ...(2-26)

§3. GENERALIZED MATRIX
VARIATE GAMMA DISTRIBUTION

In order to define a new type of matrix variate gamma distribution,
we first introduce the “Generalized Matrix Variate Gamma Function”
which is the matrix analog of Kobayashi (1991) scalar generalized
gamma function defined in (1-1) above.

Definition (4): The Generalized Matrix Variate Gamma Function
The generalized matrix variate gamma function, denoted by

I(a,A,R), is define by

TplahR)= [ 0 [XPPD R4X™ dX ..(3-1)
X>0

where R(pxp) is a symmetric matrix, Re(R) > 0, Re(a) > "2(p-1),
Re(A)>0 and the integral is over the space of pxp symmetric positive
definite matrices.

Note that the determinant
[R+X| = R |I, + R"'X]
= |R| I, + X R"|
=R[I+R“*XR" el 340)

where R” is the symmetric square root of R=R’ > 0. Change X to Y
=R *XR *for fixed R. Then

X=R*YR?" ...(3-3)
and the Jacobian of the transformation is

I(X > Y) =R ...(3-4)
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Using (3-2),(3-3), and (3-4) in (3-1) we get

Defintion (5): k
The generalized matrix variate gamma function I'y(a,A,R) can be

defined as

Fp(a,A,R) = R[*" [ RV Y40 eyt ay ...(3-5)
Y>0

It is interesting to note that the generalized matrix variate gamma
function as defined in (3-5) can be represented in temrs of the confluent
hypergeometric function with matrix argument of the second kind
y(a;c;R) (2-18). Therefore, we have

Definition (6):
The generalized matrix variate gamma function I'y(a,A,R) can be

defined as

Ip(aAR) = Tp(a) RI™™ wloga-A+¥(p+1);R) ...(3-6)

Now, we are completely ready to define a new type of generalized
matrix variate gamma distribution

Definition (7):
A pxp random symmetric positive definite matrix X is said to have

a “Generalized matrix Variate Gamma Distribution”, denoted as
GGy(a,A,R), ifits p.d.fis given by

a-i
R e X[ LAX X >0 ...(3-7)
T (a,\,R)

where R(pxp) > 0 and o > Y(p-1).

Particular Case : A =0

In such a case it is observed-from (3-1),(3-5) and (3-7)-that
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[ OR)= [ e™®x*rD gy

X>0

= I'lct) Re(w) > Ya(p-1) ...(3-8)

which is the ordinary matrix variate gamma function [See for instance,
Mathai (1993), p. 159]. '

GGP(G,O,R),ﬂ_]BL e'LT(RX) |X|a~'/z(p+l)
[, (a,0,R)

= IRI‘1 e'E(Rx) ,XIO:-Vz(pI-[)
I (a)
X>0,R>0, Re(ar) > ¥a(p-1) ...(3-9)

Which is the ordinary matrix variate gamma density G,(c,R) [Mathai
(1993)-p. 160].

§ 4. STATISTICAL PROPERTIES OF GENERALIZED
MATRIX VARIATE GAMMA DISTRIBUTION
In this section, we study some statistical properties of the random
matrices distributed as generalized matrix variate gamma distribution.

Theorem (1): Laplace transform and moment generating function
If X is a pxp real symmetric positive definitie matrix having a

generalized matrix variate gamma density (3-7), then the Laplace
transformation of X is

Ly(T) = E[¢*™™]

_ Fp (o, AR+ T)
F,, (o, A,R)

L+TR'["* ...(4-1)

and thc moment gencrating function is

M(T) = E[e"™)] = Lx(-T)

F ,l’R - T -
- L@ ) IL-TR I ...(4-2)
T, (A, R)
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where R is assumed to be symmetric positive definite, T is a real
symmetric parameter matrix and Ip+TR'] > 0.

Proof:
By definition the Laplace transform is given by

Ly(T) = E[e ™)

a-Xi
T, (@A R) 43, P

Since T is symmetric with arbitrary real elements and R is symmetric
positive definite with constant elements, without loss of generality we
may assume that (T+R) can be written as FF' where F is a pxp nonsigular

matrix. But
tr[(T+R)X] = tr(FF'X) = to( F'XF)
I-(p+1)

Now using the transformation U = F'XF with J acobian, J(X—>U)=|F
= |FF/["D, we get

a—i A-a
Lyry = BETRE () s (R+T)+U[ 4U
[ (a,AR) 43,

ARAT
= L@LRAD) o rRetpe QED
I, (a2 R) ‘

Theorem (2)

Given that the pxp matrices X; and X, are independently
distributed such that

X, ~ GGp(a,A,R) Generalized matrix variate gamma distribution
X2 ~ Gp(et,A,R) Ordinary matrix variate gamma distribution

where X; = X’; > 0, Re(oy) > %a(p-1),j = 1,2, and R=R"> 0 is a constant
matrix. Then the matrix variate distribution of the random matrix

U=X;+X; ...(4-3)
is given by
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(1+(1

g(U) = L) R IRV ypartag D)
T (a,+a;) T, (@, %R)
JFi(ag,Asoutog-U) - U>0, Re(aton) > Ya(p-1) ..(4-4)
Proof

Due to the independence of X; and X, the joint density of X; and
X,, denoted by f{X;,X3), is the product of the marginal densities. That 1s

fX1,X5) =fi(X)) H(X2) =
|R[(1[+a2 -\

e-g[R(Xl +X5)] |X1|‘11-l/i(p+1) }IP+X1|_;‘|X2|G2-V2(I’+1)
T, (MR T (o)

Put U = X, + X, for fixed X, which gives X, = U — X, J(X;—»U) = I, and
0 < X, < U (that is, U > 0, X; > 0, U-X; > 0). Then the density will
become

(Il+0'.2 ]
R o r[RU)

U =
fiX,,U) T (oA R) T, (a;)

X[ | LX [ HU-X 12
for U > 0, 0 <X, < U. Note that the determinant

[U-Xy| = [U] [I,-U Xll“‘IUl L,-X,U"'|
= U] I,-U™”X, U™

where U” is the symmetric square root of U = U’ > 0. Change X; to
V = U™" X, U™ for fixed U. Then X, = U*V U’/’ and the Jacobian of the

transformation, is J(X;—V) = |U]*P*Y. Then the joint density of U and V
becomes
al+a2—l

ﬂV,U) = |R| e-t_r[RU}] ’U|€1|+a2-%{p+l)
rp (Gl,l,R) Fp ((12 )

[V D oy et vt

for0 <V <I, U>0. Note that

The Egyptian Statistical Journal Vol.53, No.1, 2009




Generalized Matrix Variate Gamma Distribution: Some Properties and Related Distributions

57

0<X,<U 5 0<U"X, U”*<L0<V<L

}RIO‘.I-PO.z—l . . i
g(U) = e'i[[ U)”Ul"-l ap-YA(p+l)
T, (s R) T, (0ry)

Ve D e e g av

B<V<]p

IR]O.1+(IZ -i

Lo AR T (o))

o IRU) IUluﬁaz-%(Pﬂ)

)l (a,)
T (o 00s)

2Fri(ay,As o ton;-U) -.(4-5)

The above equality is obtained by using (2-13). Now, simplifying (4-5)
we get the desired result (4-4).
Q.ED

Remarks
(1)  To prove that g(U) as givne in (4-4) is indeeed a p.d.f. note-
from (2-24)-that

j et |Ula]+d2%(p+]) 2Fia,A; ogtog;-UydU
U>0

= Ip(outay) R Y(apa-At+ Ya(pt1);R) ...(4-6)

Application of (4-6) and (3-6) shows that

48
T (o) R|%1%2
| gydu = e al _L 1
u>o (o, +0,) T, (a )R] o 5@ =+ (p+IER)
[potap) R W(osou-At+ Ya(p+1);R)
=1
as required.

(i)  Inthe special case when A = 0 we can see-from (2-13)-that
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Fi(ay,0; aytap;-U)

_ l"p(a,)l"p(ag) |X|a1-%(p+l) IIp_Xlaz-‘/z(;ﬂl) dX

I‘_‘;;n(al):[ﬂp(a'z) 0<X<lI
P

I (o, +a,) _
O ‘2 =1 o T
I, (), (,) By (au1,02) - @-7)

Using (3-8) and (4-7) in (4-4) we find

o(U) = | I]w LRV [yjertor @D ...(4-8)

l"p(a, +a,)

for U > 0, Re(oy+a) > Ya(p-1). Therefore, if the pxp matrices X, j = 1,2
are independetly distributed such that

X; ~ G,(oy,R) ordinary matrix variate gamma distribution
then

U= XI + Xz = GP((I,I‘HIQ,R)

Theorem (3) :
Let X; ~ GGy(ou,A.Ip) and X; ~ G(ap, L) be independent. Define

V=X X5 X(* ...(4-9)

Where X;” is a symmetric square root of X;. Then, the p.d.f. of V is given
by

[ (o, +0;) )
V[P W (atagoutag-At (p L)LY
ey T Hertasarterkt HEt DY)

V >0, Re(ay,0) Ya(p-1) ...(4-10)

Proof:
The joint p.d.fof X; and X is
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—te (X+X,)

e (p+] 2 (pt]

X, X;) = I [T LXK X2 )
T, (ct;1,) T, (0t;)

X,>0,X,>0

Transforming V = X, %X, X, with Jacobian J(X,X;— V.X;) =
IX,|%"*D | we get the joint p.d.f. of X, and V as

1 on-Ya(pH1)
% V= V[
Bl T, (o, AL (o))
e UIIPHVIXy] |X1|ﬂz+a2"/i<¥’”) ]1p+xjj"‘ X;,>0, V>0 ..(4-11)

Now, integrating out X, from (4-11), using (2-18), we get

a,—1/2(p +1)

iV! ,[ e lUptVIXy] IXllal"“z-‘/z(PH) ]Ip+X1|'k dX,

V)=
BV G T @) o

’vlaz—l/2(p+l)
I(outan) Wloutog; artoax-A+rz(ptl)I+V)

I (a,,AL) T (a,)

which is the required result stated in (4-10).

Q.E.D.

Theorem (4)
Let W; and W, be independently distributed as GGy(n;,A,I;) and
Gp(my,.I,) respectivley. Let

F=(W+Wy)" W (W+W,)™ -.-(4-12)

Where (W,+W,)"* is any nonsingular factorization of W;+Wj in the sense
W+ W, = (W+W,)*[(W;+W,)"]". Then the p.d.f. of F is given

j'_'p(nl +n2) lFl-nT‘/z(p"‘]) |I _Flﬂz-'/z(p*'i)
r,(n,%1)0 @,) F
W(n;+ny; nyn-A+Ya(pt+1); F 0<F<I,
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Proof:
The joint p.d.f. of W, and W, is given by

1 e-tl’(wl'f' W2)
Fp(nl,l,lp)rp(nz)

f(wlsw2) =

|Wlln}%(pﬂ) |I"'V"1|_l lwzlnz%(wl) Wi>0,W,>0

Let W =W, + W, and W; = W,. Then the joint p.d.f. of W and W, 1s
given by

~tr(W) ,
W, W) = E WD [Eew
r, (0100, @,)
[W-W, 2D W>0, 0<W,;<W

Let F= W% W, W” where W =W"*W". Then the joint p.d.f. of F and
W [since J(W,—F) = [W|*®"'] is given by

_ 1 ny-Ya(p+1) no-Ya(p+1)
F,W)= F|™! L, -F| "2
BEW)= oy P I F

e't_f(W) IW|nl+ ny-Y(p+1) ]Ip+ w‘/zF W‘/zl-l
0<F<I, W>0, ..(4-14)

Integrating out W from (4-14), we get

_ 1 0yt )-A ny-Y(p+1)
gF)= |F|™! 1L, -F| ™
- T, M), @,) R

j e-tr(W) |w1|n1+n2-’/$(p+l) |F—1+W|—l dW

w>0

1 IFIHI-%(p+l)-7L le _FI ny-Ya(p+1)
rp(nlslilp)rp(HZ)

. Ty(np+ny) [FIP17 ™ * W(n,+ng;nytnp-A+Va(pt1);FT)
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where the last integral has been evaluated by using the second equality of

(2-18). This completes the proof.
Q.E.D.

Remarks
In the special case when A = 0 the results of Theorems (3) and (4)
can be simplified as follows:
(i)  Inthe p.d.f. (4-10) of Theorem (3)-with A = 0 — we have
I“p(al :051p) = 1-“p(al)
W(ot+ag; artosta(ptl ) +V)

_ 1 J- e.g[apwm ‘Slal+a2-‘/z(p+1) ds
Fo(a,a,) g3,

- 1 a+on)
_ L + V) @) T (q.+q
rp(cl'l’u?) (p ) p( l 2)

= (I, + V){«1rre

Thus the p.d.f. (4-10) of the random matrix V (4-9)- when A = 0 — takes
the form

_Tpleinas) Vet 4 v et V>0
I, (o) (a,)
.(4-15)

which is the p.d.f. of the matrix variate Beta Type II distribution.
(i)  Inthe p.d.f (4-13) of Theorem (4)-with A = 0 - we have

Lo ,0.L,) = Ty(n)
¥(n+ny; nytng+Ya(p+1);F)

1 J‘ e-t_r[(F'l 8] ISIH1+nz-'/2(P+1) ds
rp(nl)HZ) V>0
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_ 1 -1] <(nj+n3)
= _——— [F |7 (o)
T,(n,,n,) P

= |F|"1™™2

Thus the p.d.f. (4-13) of the random matrix F(4-12)- when A = 0 — takes
the form '

_ T,(m,ny) IFIn]-‘/g(p+l) Ilp_F|n2-‘/z(]:rH)

I (n)l(n,)
0<F<I,

which is the p.d.f. of the matrix variate Beta Type II distribution.

§ 5. SOME PROBABILITY DISTRIBUTIONS CONNECTED
WITH GENERALIZED MATRIX VARIATE
GAMMA DISTRIBUTION

Definition (8):
A random matrix V (pxp) is said to follow a generalized matrix

variate inverted gamma distribution, denoted as V ~ GIG,(m,A,R), if its
p.d.f. is

-1/2(p+1)—-A

[R["
T, (m-12(p+1),A,R)

-1
eE®VD v |+t

V>0,R(pxp)>0,m>p ...(5-1)

The relation between the generalized matrix variate Gamma and
Generalized matrix variate inverted Gamma distributions is given in the

following theorem.

Theorem (5)
Let V ~ GIG,(m,A,R), then via GGp(m-‘/z(pﬂ),?L,R)

Proof
The density of V is as given in (5-1). Transforming $ = V"' with

Jacobian J(V—8) = |S[®", we get the density of S as
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m-1/2(p+1)-h
f(S) = R el S L) R N N
,[m-1/2(p+1),L,R] P

,R,m—W(pﬂ)-x
[, [m-1/2(p+1),A,R]

O [SI™ I+S”|S[* (S

iR'mvlﬂ(pH)—l

e-Ll.‘(RS) ISI[m"/?(D*I)] -YA(p+1) IIP+S|_;L
I_'p [m-1/2(p+1),A,R]

which is the p.d.f. of GG, [m-Y2(p+1),A,R]
Q.E.D.

Theorem (6)
Let V ~ GIG,(m,A,L,), W~ G,(n,I,) be independent. Define

Z=V*WV* (52)
Where V* is a symmetric square root of V. Then, the p-d.f. of Z is given
by

[,[(m +n)—1/2(p+D,A L ] 7/
L@ [m=-1/2(p+1), AT |Ip L7 (m+n)-1] Z(pel}-h
Z>0 ...(5-3)
or equivalently by
I [m+n-1/2(p+1)] |Z 40D P (mtnYa(p+1 smn-A;1+Z)
I,(m) T, [m=-1/2(p+1),A,1,]
Z>0 ...(5-4)
Proof
The joint p.d.f. of V and W is given by
1 tr(W+v-1)

fV,W) =

T, () T,[m—1/2(p+1),4,1, ]

WD [V (v
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for m > p, n> Y%(p-1), W>0,and V> 0.

Transforming Z = V* W V*, with Jacobian J(W—V) = VD we get
the joint p.d.f. of V and Z as

_ 1 n-Ya(p+1)
V.Z)= Z
&vV.2) Tp(n)Fp[m—l/z(PH),lst]l |

1
e lIp +Z)V7] |V‘l-(m+n) IIP_;_V[-?L

V>0,and Z>0 ...(5-5)
Now to obtain the marginal p.d.f. of Z, we need to evaluate

A= | eultpnVY [V LAV dv ...(5-6)

v>0

Substituting in (5-6), S = V"' with the Jacobian J(V—8) = [S[P") , we

-TII IZS m II'I/ZP'I —Vzp -)\.

v>0

= [ [(m+n)-Y4(p+1),A,L,+Z] / |1p+Z|(m+">"/*<f’+‘>'* ..(5-D

= [p[(m+n)-Y2(p+1)] Y(m-+n-Y2(p+1);mtn-A;L,+Z)
...(5-8)

wherein (3-5) and (3-6) have been used. Using (5-5) together with (5-7)
and (5-8) we get the required results (5-3) and (5-4).
Q.E.D.

In the sequel, we propose a distribution connected with the
generalized matrix variate gamma distribution. This distribution may be
called “The Generalized Matrix Variate-t Distribution”.

Definition (9)
The random matrix T(pxm) is said to have a Generalized Matrix

Varite t-Distribution, denoted as T ~ T,n(0,M,%,Q,¥), if its p.d.f is
given be
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L[/2(n+m+p—-1,A, %] f2|%m
@EmY"PT, [1/2(n+p-1),4,>. ]

QI [T+ X7 (T-M) Q7 (T-M)” [~ oD os(3-5)

where
¥ =3 + % (T-M) Q" (T-MY
and
T e R, M e R™, Q(mxm) >0, X (pxp)> 0 and n> 0.

This distribution can be derived in a simple manner as shown in the
following theorem?®.

Theorem (7)
Let V ~ GGy(*2(ntp-1),1,%), independent of X ~ N,,(O,I, ® Q).

Define

T = (V*YX+M ..(5-11)

Where M(pxm) is a constant matrix, and V* VH=V. Then,
T ~ Tpm(0,M,3,Q,¥).

Proof
The joint p.d.f. of V and X is given by

(2n)—l,12mp)2 ‘lﬂ(ﬂ*P—l)“l’QI_]ﬁp
I"p[l/2(n +p—1),k,z ]

fiv.X) =

1 -I r H
gHEVHAX 21X 1y 2) IL+V|* V>0, and X € RP™

_______________

% The random matrix X(pxm) is said to have a matrix variate normal
distribution with mean matrix M (pxm) and covariance matrix 2 ®Qif
its p.d.f. is given by (2r)”™ [¥[*m QP e Iz Myl (x-my where

X € R™™, M e R, ¥(pxp) > 0, and Q(mxm) > 0. We shall denote this

by X ~ N, (MY ® Q).
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Now, let T = (V*yX + M. The Jacobian of the transformation is
J(X—T) = [V|*™. Subsitituting for X in terms of T in the joint p.d.f. of V
and X, and multiplying the resulting expression by J(X—T), we get the
joint p.d.f. of T and V as

(zﬂ)_ll'zm p 1/2{n+tp-1)-%]| Q -1/2p
&(T,V) = —— 2| i
/2 +p-1),4, ) ]

|V|‘/z(r1+m-2) |Ip+Vl-l

T[T +A(T-M) Q' (T-M)']V}

Now, integrating out V using the generalized matrix variate gamma
integral (3-5) the p.d.f. of T is obtained as

T,[1/2(m+m+p—1),,%]
@m)V=° T [1/2(n+p-1),1, . |

h(T) = = ol

I,t% Z‘I(T-M) Q'I(T_M)r A-Ya(ntm+p-1)
p

where W is as defined in (5-10). This completes the proof.
QED
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