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ABSTRACT

Model identification is the first and most important stage when analyzing a time
series. As a result of analytical complexity, very little has been done from a Bayesian
viewpoimnt in order to identify the orders of ARMA models. Some analytical and
numerical identification techniques have been suggested to handle the Bayesian
identification problem. These techniques have been introduced by Monahan (1983),
Broemeling and Shaarawy (1987) and Ali (2003). However, the performance of
Monahan (1983) and Ali (2003) techniques have not been studied yet through an
effectiveness study. This article has three different objectives. The first one is to carry
out a simulation study to assess the performance and efficiency of Monahan’s
technique. The second objective is to carry out a simulation study to test the adequacy
of Ali’s technique in handling the identification problem of ARMA processes. The
third objective is to compare among the three Bayesian identification techniques
through a comprehensive simulation study. In addition, the results of the three
Bayesian Identification techniques are compared with the well-known non-Bayesian
automatic technique, 47/C. The numerical results support the adequacy of the Bayesian
techniques in solving the identification problems of autoregressive moving average

processes.

Keywords: Time series, Identification, ARMA models, AIC, normal gamma density,

Jeffreys’ prior, posterior probability mass function .

1. INTRODUCTION

The autoregressive moving average models are very useful in modeling time
series data that arise in many real life situations. Time series analysis is usually based

on ARMA(p,q) parameterization in which the variable of interest is linearly regressed
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on a finite number (p) of the previous values of the process and a finite number (g) of
the previous random shocks. If the moving average order ¢ is zero, one will have pure
autoregressive models. If the autoregressive order p is zero, one will have pure
moving average models. The orders p and ¢ of an ARMA model are usually unknown
and have to be identified or estimated. In literature, Bayesian and non-Bayesian

suggestions are presented to solve this identification problem.

The most popular non-Bayesian technique to identify the orders of
ARMA(p,q) models is developed by Box and Jenkins (1970). Their methodology is
based on matching the sample autocorrelation and partial autocorrelation functions
with their theoretical counterparts. Their technique is explained in many references
such as Chatfield (1980), Priestley (1981), and Tong (1990). Another non- Bayesian
technique, known as the automatic one, is based on fitting all possible models then
computing a certain criterion for each model, such as A/C, FPE and SIC, and
choosing the model which minimizes the proposed criterion. For more details about
the automatic technique, the reader is referred to Akaike (1973, 1974), Hannan and
Quinn (1979), Mills and Prasad (1992), and Beveridge and Oickle (1994).

On the other hand, the Bayesian literature which is devoted to handle the
identification problem of ARMA models is sparse. Diaz and Farah (1981) have
developed a direct Bayesian method to identify the pure autoregressive models. This
technique depends on deriving the posterior probability mass function of the order p
in a closed form. Monahan (1983) has made an important contribution to the analysis
of low order ARMA models by developing a numerical technique which implements
the identification, estimation, and forecasting phases of an ARMA process.
Broemeling and Shaarawy (1987) have developed an approximate analytical
procedure to 1dentify the orders of ARMA processes depending on approximating the
posterior distribution of the coefficients by a multivariate t distribution, then the
significance of coefficients is tested by a series of t-tests in a similar fashion to the
backward elimination procedure used in linear regression analysis. George and
McCulloch (1993) have introduced the stochastic search variable selection (SSVS)
which can be used for ARMA model identification via Gibbs Sampling. Most
recently, Daif et al. (2003) have studied the efficiency of Diaz and Farah technique
and compared it with Broemeling and Shaarawy technique for autoregressive models

through a large scale simulation study. Moreover, Shaarawy and Ali (2003) have
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developed a direct Bayesian technique to identify the orders of seasonal
autoregressive models. Ali (2003) has derived the posterior mass function of the
orders p and g for ARMA models although he hasn’t checked the efficiency of the
proposed technique. Shaarawy et al. (2007) have extended the direct Bayesian
technique to handle the moving average model identification problem and checked its
performance through an effectiveness simulation study. For more details about the

identification techniques, the reader can is referred to Newbold (1984,1983).

This article studies and compares the performance and efficiency of three
Bayesian Identification procedures for ARMA models. The three procedures are
Broemeling and Shaarawy (1987), Monahan (1983) and Ali (2003) which will be
denoted by B-S, M and D techniques respectively. The simulation study has been
chosen in such a way to include different ARMA models, different parameter values
and different prior distributions of the model orders. In addition, the adopted Bayesian
identification procedures are compared with the well known non-Bayesian automatic

technique, AIC.

This paper is structured as follows. Section 2 presents ARMA models. Section
3 sheds lights on B-S technique while section 4 is devoted to review M and D
techniques as pure Bayesian solutions of the identification problem. The steps and

results of the effectiveness study are explained in section 5.

2. AUTOREGRESSIVE MOVING AVERAGE PROCESSES

The mixed autoregressive moving average (ARMA) class of models (2.1) is

quite important in modeling time series data, see for instance Box and Jenkins (1970).
Let {t } be a sequence of iIntegers, p,q€ {1, . }, { 3ois
a sequence of real observable random variables, and {51} is a sequence of independent

and normally distributed unobservable random variables with zero mean and
unknown precision 7 >0. The autoregressive moving average model of orders p and

g, denoted by ARMA(p,q), is defined for n observations as
®(B)y, = ©(B)e, @2.1)

where ®(B)=1-§B—¢,B’ —---—¢,B” and ©(B)=1-6,B-6,B* —---— 06, B,

q
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and the backshift operator B issuch that B"y, =y, ; r=12,...

The time series is stationary if the roots of fI)(B) lie outside the unit circle. On
the other hand, the process is invertible if the roots of @(B) lie outside the unit circle.

However, ARMA(p,q) model (2.1) can be rewritten explicitly as
P q
Y =&+ Gy — .06 ,t=1,2,..n (2.2)
i=1 =l

Where ¢,,¢,,---.¢,,6,,6,,---,0, are the model coefficients.

In practice, the orders p and ¢ are unknowns and one has to determine values
for them using n observations S, =[y,,¥,,...,¥,] . Thus the statistical question is:
"given n observations generated from an autoregressive moving average process, what
are the values of p and ¢?". Broemeling and Shaarawy (1987), Monahan (1983) and
Ali (2003) have introduced different Bayesian identification techniques to answer this

question. The following two sections introduce these three techniques.

3. INDIRECT BAYESIAN IDENTIFICATION TECHNIQUE

The first step of B-S technique, which has been introduced by Broemeling and
Shaarawy (1987), is to derive the posterior distribution of model coefficients. To

derive the posterior distribution of the model coefficients, suppose that there is a time

. s . ' ()
series with n observations S, :[y,,yz,...,yn] . Let @ :(¢i,¢2,...¢ml) and

«(my) . . .
@ = (91,92,...9m2) . Where m; is the known maximum value of p and m; is the

known maximum value of g, where m; and m; are non-negative integers. By

conditioning on the first m; observations and letting B = 0= B T Sy =(),

where m>m,+1 (see Priestley,1981), The conditional likelihood function has the form

n=my 2
Ll(g(nu)’g(ﬂiz),rl§n_m ): _z_) exp 5 Z Y, ﬁzgéiyt-i +Zgj£-'—j (3])
! 2r 2 t=m,;+1 i=l Jj=1
This likelihood function is intractable since the exponent is not a quadratic
function in the model’s coefficients. This leads to a non-standard posterior

distribution of the model coefficients. Therefore, making inferences about model
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coefficients becomes too difficult. To overcome this problem, the above likelihood
function can be approximated using B-S approximation (see Broemeling and Shaarwy

(1987)) as

L@,0,r18,,) [g—fexp{—gz[x -Sorv30 ]} 62
T

t=m +1

where £, is a nonlinear least square estimate of ¢,_,. They combined the

t-j
approximate conditional likelihood function (3.2) with a Jeffreys’ prior as a non-

informative prior for the model’s coefficients which has the form
g, (@™,0" e, O™ eR™, 0™ cR™, >0 (3.3)

They proved that the marginal posterior distribution of ®“™,©®"* is a multivariate t-
distribution with n—2m, —m, degrees of freedom ((see Broemeling and Shaarawy

(1987)).

The second step of the B-S identification technique is to employ a sequence of
univariate t-tests about the significance of the model’s coefficients, similar to
backward elimination procedure. The B-S identification technique has been extended
to include a normal-gamma prior by Broemeling and Shaarawy (1988). An advantage
of this technique is that it is simple and easy to program. However, the efficiency of
B-S identification technique has been studied for mixed ARMA models through a
large scale simulation study by El-Souda (2000).

4. PURE BAYESIAN IDENTIFICATION TECHNIQUES

This section is devoted to present M and D Bayesian identification techniques
for mixed ARMA models. Unlike the indirect technique, these Bayesian identification
techniques assume the orders p and ¢ to be random variables and the problem is how
to find their posterior probability mass function. The conditional likelihood function

of ARMA(p,q) model has the form

Sk 2
T 2
Lz (9(p),@_(q‘):pQQ3rl§n~p):(EJ exp _E Z ( Z¢pjyt-_; +Z qi l'—IJ

t=p+l|

(4.1)
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th

where ¢, is the coefficient of the ;" lagged value of y, in the p" -order

autoregressive part, @ = (qﬁp,,gﬁpz,...;ﬁpp), 6, is the coefficient of the i" lagged

value of &, in the ¢ -order moving average part, @@ = (Qq, i i, ), B o pe

@(‘” eRY,7>0and p=12,..,P, ¢g=12,...,0 where P,Q are the largest possible
orders of p, g respectively. The likelihood function (4.1) is analytically intractable

since the error terms ¢,_;’s are nonlinear functions in the model coefficients.

4.1 Monahan's Identification Technique (M-Technique)

The M-technique, which has been introduced by Monahan (1983), merged the
above likelihood function (4.1) with a prior function, assume for illustration the

Jeffreys' one of the form

£ (@(’”,@(‘”, o8 q.“f) ot ; T30 (4.2)

This results in a posterior probability function of the form

nep
2 n

2

5 T £ %

C@",0",p,q,718,.,) = ——gexp1=2 D, (y, —Z¢pjy,-j+29,,.fe,,-]
(27;) 2 t=p+1 j=1 i=1

(4.3)

This function is not a known standard form of a density function since ¢,_; is

unknown; therefore mathematical integrations cannot carried out to get the marginal
posterior mass function of p and g. The M-technique solves this problem numerically
by doing numerical integrations (see Monahan (1983)). Disadvantages of using
numerical integrations are complexity and time consuming especially for high
dimensions cases. However, the efficiency of this technique has not been studied yet

through a large scale simulation study.
4.2 Direct Identification Technique (D-Technique)

Instead of using numerical integration to get the marginal posterior
distribution of the orders, One can use an analytical approximation to simplify the
form of the likelihood function in (4.1). However, one can’t approximate the

unknowns ¢&,_;’s without determining the values of p and g. Thus, we need another

identification technique to determine initial values of p and ¢, say p,and ¢,
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respectively. To identify theses initial orders, Ali (2003) has selected B-S
identification technique (explained in section 3) which gives high percentage of
correct identification (see El-Souda, 2000). Consequently, the likelihood function in

(4.1) is approximated by the following form

n=p
n

2
* q T Tz T 2 q 5
Lz (_(_I')_(P},@(!)gp7QsTJ§'_a—p): (EJ EXpy—— Z (yt _Z¢pjyl—j +qu‘»g"-J
=1

i=1

(4.4)

Po Jo A a
where &, =y, —Z¢j)’r-_; +Z‘9f‘€r~i : ¢j,j=1,2,...,p0 and Qi,j =1,2,...,q, are the

J=l i=l
nonlinear least square estimate of the coefficients obtained by fitting the model

ARMA(pq, q,).
Combining the approximate likelihood function (4.4) with the Jeffreys’ prior

(4.2) and integrating with respect to ®" ),Q(q) and 7, results in a closed form of the

marginal posterior mass function of p and ¢, see Ali (2003).

Also, it is important to mention that the posterior mass function of p and ¢ has
been derived using a normal gamma prior, a conjugate one (see Ali (2003)). However,
the efficiency of the direct Bayesian identification technique for mixed ARMA

models has not been checked yet.

S. AN EFEECTIVENESS STUDY

This section aims to assess and compare the performance and efficiency of the
three considered Bayesian identification techniques in selecting the orders of mixed
autoregressive moving average processes (ARMA) through simulation studies.
Moreover, this comparison will be carried out with the well known non-Bayesian
identification technique, AIC. Three different prior distributions of the model orders
are employed to identify the orders of ARMA(1,1), ARMA(1,2) and ARMA(2,1)
sources with various assumed parameter values. The parameters of some cases are
chosen to be well inside the stationarity-invertibility domains while in other cases
they are chosen to be near the boundaries. All computations are performed using

MATLAB 7.
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The used effectiveness criterion of the considered techniques is the percentage
of correct identification. Such effectiveness criterion is computed with respect to
different time series lengths (sample size) and various parameters sets. For all models,

the precision of the noise term 1is fixed at 2.

For Illustration, simulation 1, begins with generating 500 data sets of normal
variates, each of size 500, to representeg,. These data sets are then used to generate
500 realizations, each of size 300, from ARMA(1,1) process with coefficients
¢=-0.5, 8 =0.8. Note that, the first 200 observations are ignored to remove the
initialization effect. For a specific prior, the second step of simulation 1 is computing
the posterior distributions of the three identification techniques. All computations are
done, assuming maximums (2,2) for orders (p,g), to identify each of the 500
realizations and finding the percentage of correct identification. The sample size n is

taken to be 50, 100, 150, 200 and 300. With respect to the prior probability mass

function of orders p and g, which is combined with the vague prior of ®” @' and

7, the following three priors are used.

Priorl: g(p,q) = p =012 P,q=0]12,0 ; where

1
(P+1)(QO+1) -1
».9)#0,0)

Prior2 : g(p,q) < (0.5)"* p=012,---,P,g=0,12,---,0 ; where (p,q)=(0,0)
Prior3: for P=2 and 0=2

2(0,1) = g(1,0) < 0.4, g(L1) = g(0,2) = g(2,0) «x 03, g(1,2) = g(2,]) < 0.2and g(2,2) = 0.1

The first prior assigns equal probabilities to all possible values of the orders p
and g. The second prior is chosen in such a way to give probabilities that decline
exponentially with the order, while the third prior is chosen in such a way to give

probabilities that decrease with an absolute amount 0.1 as the order increases.

All other simulations are done in similar steps but using different parameter

sets and different models as shown in the following table.
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Table (5.1): Parameter Sets for Simulated ARMA models

PROCESS CASET CASE Il CASEII CASE VI
ARMA(1,1) (-0.5,0.8) (-0.9,0.5) (-0.6,0.6) (-0.9,0.9)

ARMA(L2) | (0.50.1,08) | (0.903-06) | (0.503-0.6) | (0.9,0.1,0.8)
ARMA(2,1) | (0.3,-0.609) | (01,08-0.5) | (0.3-0.60.5) | (0.1,0.8,09)

The results of the simulations studies for ARMA(1,1), ARMA(1,2) and
ARMA(2,1) models are displayed in tables (5.2), (5.3) and (5.4) respectively.

Table (5.2): Percentages of Correct Identification of the Bayesian Techniques
for ARMA(J,]) Processes Assuming (m1,m2)=(2,2)

b ABAME'TE.B_,S aleelV, , PR%RI PRIA:()RZ PRJ["{)R3 o) PRI%RI PR:IDORZ PRJ%R3 AiC
50| 362 59.0 664 |726| 3.0 9.4 122 | 61.0

$=-0.5 100 | 482 64.0 740 |84.6| 16.0 24.4 262 | 708
150 | 482 66.0 76.6 |83.0| 19.8 24.4 27.6 | 742

0=0.38 200 54.4 65.0 742 | 834 | 22.0 26.6 28.0 77.0
300 | 622 69.0 774 | 842 | 29.6 33.0 344 | 76.0

- 50 | 57.6 72.8 758 |322| 0.6 7.0 134 | 618
¢=-09 00| 754 82.4 854 |552| 6.4 24.2 312 | 716
150 | 88.0 91.2 924 |71.0] 14.0 29.0 374 | 73.8

0 =0.5 200 | 93.4 94.6 94.6 |82.4| 228 36.0 414 | 754
300 | 97.0 97.6 98.0 |86.2| 27.0 37.6 414 | 75.8

50 | 372 65.0 688 |41.8| 1.0 7.8 120 | 56.0

$=-0.6 100 | 682 79.8 856 |694| 6.6 17.8 21.6 | 672
150 | 83.0 88.6 924 |798| 162 242 270 | 72.0

6=0.6 200 | 90.0 93.0 946 |842| 196 27.6 202 | 72.6
300 | 98.4 8.8 988 |85.6| 23.8 29.4 31.0 | 7558

T 50 | 784 87.2 80.6 | 80.0 | 19.4 35.4 418 | 772
b=—-09 |100] 942 96.4 974 |772| 332 43.6 474 | 774
150 | 976 98.8 99.0 |80.0| 426 49.4 518 | 752

=09 200 | 99.0 99.0 99.6 | 80.6| 454 50.2 53.8 | 764
300 | 99.8 | 1000 | 1000 |78.0] 426 46.8 49.6 | 74.6

Source : Simulated Data
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Table (5.3): Percentages of Correct Identification of the Bayesian Techniques
for ARMA(Z,2) Processes Assuming (ml,m2)=(2,2)

; M
PARAMETERSS N | prionr | parons | petons. |- 5. | pitor | prionz | phioks. | A€
¢=-05 | 50 | S04 | 346 | 216 |454| 108 | 320 | 306 | 452
100 | 624 | 586 | 518 |702| 330 | s34 | s26 | 702
0 =0.1 150 | 656 | 650 | 602 [786| 448 | 616 | 612 | 758
0 —0g |200] 670 | 670 | 644 |828| 526 | 654 | 654 | 826
L= 300 | 694 | 690 | 668 [89.0| 600 | 740 | 740 | 846
$ =09 50 | 744 | 758 | 722 |838| 48 | 396 | 390 | 810
100 | 870 | 862 | 846 |[872| 206 | 568 | 568 | 838
6 =03 150 | 902 | 896 | 882 [868| 362 | 620 | 620 | 814
0 06 |200] 930 | 922 | 920 |902| 470 | 90 | 690 | 836
, =00 1300 960 | 958 | 956 |90.6| 568 | 722 | 722 | 840
é=05 50 | 504 | 508 | 420 |452| 38 | 272 | 254 | 494
100 | 586 | 620 | 578 |73.4| 200 | 5.0 | 486 | 738
6 =03 150 | 634 | 660 | 640 |868| 330 | 622 | 618 | 834
0 = o0c |200| 6s4 | 688 | 676 |880| 444 | 678 | 676 | 824
, =790 1300 | 646 | 688 | 684 |882| s34 | 708 | 708 | 84.6
4 =09 50 | 238 | 56 18 |348] 7.6 | 250 | 244 | 74
100 | 328 | 114 26 |[414| 202 | 346 | 332 | 108
0 =01 7150 | 436 | 202 92 |486| 300 | 414 | 398 | 158
g —og |200| 538 | 274 | 136 [576| 362 | 486 | 468 | 240
G 300 | 608 | 384 | 246 |662| 484 | 596 | 582 | 34.0

Source : Simulated Data

Table (5.4): Percentages of Correct Identification of the Bayesian Techniques
_for ARMA(2,1) Processes Assuming (ml,m2)=(2,2)

ki s - Bl M M M D D D
PARAMETERS |\ N | pprors | priorz | priors | S | priori | priorz | priors | 4%€
¢ =0.3 50 80.2 81.2 77.2 86.0 [ 60.6 81.4 81.2 77.8
1 100 | 96.2 96.4 96.0 884 | 79.6 86.4 86.4 82.6
¢ =-0.6 150 | 99.0 99.4 992 | 874 | 81.8 86.2 86.2 83.8
2 200 | 99.8 99.8 99.8 | 87.2| 83.6 86.2 86.2 86.6
8=0.9 300 | 100.0 100.0 100.0 | 83.8]| 82.0 85.6 85.6 85.4
¢ =0.1 50 46.8 38.6 30.0 |254| 428 52.8 46.8 40.0
1 100 | 54.0 48.4 450 |57.0| 71.0 71.8 66.8 67.8
¢ =08 150 57.6 54.6 532 | 78.2| 832 83.2 81.0 79.2
2 200 61.2 58.6 558 |852| 89.6 89.8 88.2 84.0
0=-05 300 62.8 59.8 58.0 920 922 95.4 95.2 86.2
¢ =0.3 50 46.8 55.6 48.2 50.8 | 55.6 64.6 59.6 56.0
1 100 ] 59.0 65.0 624 |814| 79.6 83.4 82.0 77.6
¢ =-0.6 150 | 58.0 64.4 624 |894| 874 90.2 89.8 82.4
2 200 | 58.0 62.6 614 |902| 874 90.4 90.4 82.6
0=0.5 300 56.6 61.8 60.8 |91.4| 090.6 93.0 93.0 82.0
¢i=01" 50 26.6 8.6 3.8 13.2 | 43.0 47.2 45.8 8.2
1 100 | 44.8 22.6 134 | 234 482 51.0 49.0 19.2
¢ =0.8 150 | 57.0 34.6 224 302 49.0 51.4 49.2 24.0
2 200 | 63.0 41.8 29.2 |37.2| 55.2 57.8 55.4 31.6
6=09 300 69.4 53.6 422 462 | 61.2 64.0 61.2 39.8

Source : Simulated Data
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From the above tables, one can summarize the results as follows:

1

The percentages of correct identification of the four considered technique increase

as the time series length » increases.

For ARMA(1,1) process (table (5.2)), it looks that the M-technique, which 1s the

exact one, dominates all other techniques except the case in which the parameter
of the moving average part is near the invertibility boundary and the parameter of
the autoregressive part is well inside the stationarity region. The B-S technique
gives high percentages of correct identification for all cases and for all n
especially with n>50.7 Also, it is clear that the D-technique is the worst one for all
cases and for all n. The AIC technique gives good results being greater than 55%

for all cases and for all .

For ARMA(1.2) process (table (5.3)), the B-§ technique dominates all other

techniques almost everywhere. The results of the last case in which the parameter
values are near the invertibility and stationarity boundaries are the worst for the all
techniques as it is expected. In general, the results of M-technique are less than
those of the case of table (5.2) because the prior probabilities give more weight to
the model with small order. Unsimilar to ARMA(1,1) cases, the percentages of
correct identification of M-Prior] are better than those of M-Prior2 and M-Prior3.
In addition, one may say that the results of the D-technique are better than its
results in table (5.1).

For ARMA(2.1) process (table (5.4)), all results are fairly high except the case in

which the parameters are near invertibility and stationarity boundaries. The results
of the D-technique for Prior3 are the best almost everywhere. Similar to
ARMAC(1,2) cases, the M-Priorl is still superior to the other two priors. The B-S

technique is still stable.

For the matter of comparison, One may say that the B-S and AIC techniques are

more stable than the other techniques.

CONCLUSION

The article has studied the efficiency of three Bayesian identification

techniques, M, D and B-S techniques, and used to identify different mixed ARMA
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sources through large scales simulation studies. The percentages of correct
identification have been calculated using the three proposed identification techniques
and the automatic AIC technique. The efficiency of each technique depends on the
assumed parameter set of the sources, time series length and the order of the assumed
source. For sufficient large n, all techniques are fairly adequate in identifying mixed
ARMA models. Generally, for the purpose of comparison, the study shows that B-S
technique is more stable than the other techniques. However, the analysis of the
numerical results shows that the adopted three Bayesian identification techniques can

efficiently identify the order of autoregressive moving average processes.
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